Breast image reconstruction and cancer detection using microwave imaging /
This reference text explores cutting edge research into the detection of breast cancer using microwave imaging.
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction to breast cancer
- 1.1. Introduction to cancer
- 1.2. Worldwide cancer statistics
- 1.3. Breast cancer statistics
- 1.4. Breast anatomy and breast cancer
- 1.5. Summary
- 2. Introduction to breast cancer detection techniques
- 2.1. Imaging modalities for breast cancer screening
- 2.2. Mammography
- 2.3. Ultrasound imaging
- 2.4. Magnetic resonance imaging
- 2.5. Positron emission tomography
- 2.6. Diffuse optical tomography
- 2.7. Electrical impedance tomography
- 2.8. Computed tomography (CT)
- 2.9. Microwave imaging
- 2.10. Comparison of mammography, MRI and ultrasound
- 2.11. Overview of image reconstruction methods
- 2.12. Summary
- 3. Introduction to microwave imaging
- 3.1. Introduction
- 3.2. Introduction to passive microwave imaging
- 3.3. Microwave radiometry for cancer detection
- 3.4. Active microwave imaging
- 3.5. Summary
- 4. Finite difference time domain method for microwave breast imaging
- 4.1. Overview of computational electromagnetic methods
- 4.2. Motivation
- 4.3. Overview of FDTD
- 4.4. Derivation of basic FDTD update equations
- 4.5. Polarization current density equation derivation for numerical breast phantom region
- 4.6. Electric field update equation derivation for numerical breast phantom region
- 4.7. Derivation of electric field update equations for PML region
- 4.8. Magnetic field update equations
- 4.9. Steps for FDTD implementation
- 4.10. Simulation parameters
- 4.11. Results
- 4.12. Summary
- 5. 3D level set based optimization
- 5.1. Multiple frequency inverse scattering problem formulation
- 5.2. Introduction
- 5.3. Problem formulation
- 5.4. Review of previous work
- 5.5. Theoretical foundations
- 5.6. Single 3D level set function based optimization
- 5.7. Two 3D level set function based optimization
- 5.8. Simulation parameters
- 5.9. Results
- 5.10. Summary
- 6. Method of moments
- 6.1. Theoretical background
- 6.2. Problem formulation
- 6.3. Computation reduction using group theory
- 6.4. Inverse scattering problem formulation
- 6.5. Simulation parameters and noise consideration
- 6.6. Results
- 6.7. Summary
- 7. Finite difference time domain for microwave imaging
- 7.1. Introduction to finite difference time domain
- 7.2. Microwave image formation using confocal technique
- 7.3. Space-time beamforming
- 7.4. Removal of skin-breast artifact
- 7.5. FDTD based time reversal for microwave breast cancer detection
- 7.6. Summary
- 8. Review of machine learning based image reconstruction for different imaging modalities
- 8.1. Introduction
- 8.2. Traditional image reconstruction techniques
- 8.3. Machine learning techniques for image reconstruction
- 8.4. Performance analysis of proposed approaches
- 8.5. Summary
- 9. Review of machine learning based image reconstruction for microwave breast imaging
- 9.1. Motivation
- 9.2. Machine learning in microwave imaging
- 9.3. Flow of the machine learning based microwave breast imaging for cancer diagnosis
- 9.4. Variational Bayesian inversion for microwave breast imaging
- 9.5. Deep neural networks for microwave breast imaging
- 9.6. Summary
- 10. Microwave image reconstruction methods
- 10.1. Levenberg-Marquardt method
- 10.2. Gauss-Newton method
- 10.3. Born iterative method
- 10.4. Stochastic optimization methods for microwave imaging
- 10.5. Summary
- 11. The role of AI in diagnosis, treatment and monitoring of breast cancer during COVID-19 and ahead
- 11.1. Introduction
- 11.2. AI architectures
- 11.3. The role of artificial intelligence in diagnosis of breast cancer
- 11.4. The role of AI in treatment of breast cancer
- 11.5. The role of AI in monitoring of breast cancer
- 11.6. AI based integrated system for breast cancer management
- 11.7. Summary
- Appendix A. Numerical breast phantom, antenna placement and immersion (surrounding) medium
- Appendix B. Important derivations.