Cargando…

A mathematically coherent quantum gravity /

The development of a successful theory of quantum gravity in the context of the early universe is the key next step in theoretical physics. This book takes that step by describing a coherent mathematical framework for both the evolution of discrete space-time and the quantum graviton in the Planck r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Moffat, James, 1948- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface : why you should read this book
  • 1. Quantum theory
  • 1.1. Basic notions
  • 1.2. Non-relativistic quantum theory
  • 1.3. Exploiting quantum theory embedded in classical gravity
  • 1.4. Special relativity
  • 1.5. Dirac relativistic spinor theory
  • 1.6. von Neumann algebras
  • 1.7. A higher level of abstraction : quantum W*-algebras
  • 1.8. A brief comparison with the approach of Rovelli and Penrose
  • 2. Computational spin networks and quantum paths in space-time
  • 2.1. Introduction
  • 2.2. The measurement of space and time
  • 2.3. Computational spin networks
  • 2.4. The homology invariants of space-time
  • 2.5. Quantum paths in space-time
  • 2.6. Fractal paths in classical space-time
  • 2.7. Supersymmetry and the spinor calculus
  • 2.8. Irreducible representations of the Poincaré Lie algebra
  • 2.9. Dirac spinors and the spinor calculus
  • 3. Particles in algebraic quantum gravity
  • 3.1. Introduction
  • 3.2. Lie groups, fibre bundles and quantum fields in loop quantum gravity
  • 3.3. A remarkable theorem
  • 3.4. Properties of the projection onto the base space B of a Stonean fibre bundle K
  • 3.5. Quantum connections
  • 3.6. The supersymmetric extension of the standard model
  • 3.7. Factorial representations of the graded Lie algebra
  • 3.8. Does supersymmetry exist? ATLAS results for Run 2 of the LHC at 13 TeV
  • 3.9. Adding fermions and bosons to the mix
  • 3.10. The 10-dimensional pure gravity action
  • 3.11. Adding bosons to the theory
  • 3.12. Adding fermions
  • 3.13. Symmetry breaking to create mass
  • 4. The algebraic nature of reality
  • 4.1. Introduction
  • 4.2. Symmetry invariance and symmetry breaking in Yang-Mills quantum fields
  • 4.3. The structure of local algebras of Yang-Mills quantum fields
  • 4.4. Developing a diffeomorphism invariant theory for quantum states
  • 4.5. The information dynamics of black holes
  • 4.6. Summary of chapter 4
  • 5. Implications
  • 5.1. Implications for mathematics
  • 5.2. Further implications for physics.