A mathematically coherent quantum gravity /
The development of a successful theory of quantum gravity in the context of the early universe is the key next step in theoretical physics. This book takes that step by describing a coherent mathematical framework for both the evolution of discrete space-time and the quantum graviton in the Planck r...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2020]
|
Colección: | IOP ebooks. 2020 collection.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface : why you should read this book
- 1. Quantum theory
- 1.1. Basic notions
- 1.2. Non-relativistic quantum theory
- 1.3. Exploiting quantum theory embedded in classical gravity
- 1.4. Special relativity
- 1.5. Dirac relativistic spinor theory
- 1.6. von Neumann algebras
- 1.7. A higher level of abstraction : quantum W*-algebras
- 1.8. A brief comparison with the approach of Rovelli and Penrose
- 2. Computational spin networks and quantum paths in space-time
- 2.1. Introduction
- 2.2. The measurement of space and time
- 2.3. Computational spin networks
- 2.4. The homology invariants of space-time
- 2.5. Quantum paths in space-time
- 2.6. Fractal paths in classical space-time
- 2.7. Supersymmetry and the spinor calculus
- 2.8. Irreducible representations of the Poincaré Lie algebra
- 2.9. Dirac spinors and the spinor calculus
- 3. Particles in algebraic quantum gravity
- 3.1. Introduction
- 3.2. Lie groups, fibre bundles and quantum fields in loop quantum gravity
- 3.3. A remarkable theorem
- 3.4. Properties of the projection onto the base space B of a Stonean fibre bundle K
- 3.5. Quantum connections
- 3.6. The supersymmetric extension of the standard model
- 3.7. Factorial representations of the graded Lie algebra
- 3.8. Does supersymmetry exist? ATLAS results for Run 2 of the LHC at 13 TeV
- 3.9. Adding fermions and bosons to the mix
- 3.10. The 10-dimensional pure gravity action
- 3.11. Adding bosons to the theory
- 3.12. Adding fermions
- 3.13. Symmetry breaking to create mass
- 4. The algebraic nature of reality
- 4.1. Introduction
- 4.2. Symmetry invariance and symmetry breaking in Yang-Mills quantum fields
- 4.3. The structure of local algebras of Yang-Mills quantum fields
- 4.4. Developing a diffeomorphism invariant theory for quantum states
- 4.5. The information dynamics of black holes
- 4.6. Summary of chapter 4
- 5. Implications
- 5.1. Implications for mathematics
- 5.2. Further implications for physics.