Cargando…

Turbulence and instabilities in magnetised plasmas. Volume 1, Fluid drift turbulence /

Ever since the first observations of turbulent fluctuations in laboratory plasma experiments in the years around 1980, turbulence in magnetised plasmas has been a subject of vigorous interest in the field of plasma physics and magnetic confinement. The first of a two-volume set, this book begins wit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Scott, Bruce D. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP series in plasma physics.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Overview : magnetised plasma dynamics
  • 1.1. Dynamics in plasmas
  • 1.2. Magnetised plasmas
  • 1.3. Outline of the work
  • 2. Introduction to turbulence
  • 2.1. Statistical nonlinearity and cascade dynamics
  • 2.2. Eddy mitosis and the cascade model
  • 2.3. The statistical nature of turbulence
  • 2.4. Quadratic nonlinearity and three-wave coupling
  • 2.5. Fluid turbulence--energy and enstrophy
  • 2.6. MHD turbulence
  • 2.7. Selective decay
  • 2.8. How the turbulence becomes two-dimensional
  • 2.9. Plan
  • 3. Turbulence in two-dimensional systems
  • 3.1. Various model systems
  • 3.2. 2D hydrodynamic turbulence
  • 3.3. 2D MHD turbulence
  • 3.4. 2D electron MHD turbulence
  • 3.5. 2D Hall MHD turbulence
  • 3.6. Compressibility in MHD
  • 4. Driven/dissipative turbulence
  • 4.1. Parallel dynamics along the guide field
  • 4.2. The model system for dissipative ExB turbulence
  • 4.3. Turbulence in the adiabatic and hydrodynamic limits
  • 4.4. Implication of the ion gyroradius
  • 5. Absolute equilibrium ensembles
  • 5.1. AEQ and the role of dissipation in turbulence
  • 5.2. The conserved quantities and equipartition
  • 5.3. The phase space of degrees of freedom
  • 5.4. Computational verification
  • 5.5. Equipartition among the energies
  • 5.6. Reintroduction of dissipation
  • 6. Fluid electrodynamics in a plasma
  • 6.1. Introduction
  • 6.2. Ideal fluid equations and electrodynamics
  • 6.3. High frequency motion under fluid electrodynamics
  • 6.4. Quasineutral motion in a neutral plasma
  • 6.5. Fluid plasma dynamics under quasineutrality
  • 6.6. E Pluribus Unum--the steps to MHD
  • 6.7. MHD waves--Alfvén waves
  • 6.8. Energetics of the ideal fluid dynamical systems
  • 6.9. Dissipation--corrections to the ideal plasma
  • 6.10. Chapman-Enskog procedure--dissipation
  • 6.11. The moment approach--diamagnetic fluxes
  • 7. Fluid drift dynamics in a magnetised plasma
  • 7.1. Introduction
  • 7.2. What the drift approximation is
  • 7.3. Perpendicular force balance--diamagnetic current
  • 7.4. Parallel dynamics-shear Alfvén nonlinearity
  • 7.5. Perpendicular force balance--fluid drifts
  • 7.6. The polarisation drift
  • 7.7. Drift ordering and 'delta-f'
  • 7.8. Derivation of the fluid drift equations
  • 7.9. Energetics of the fluid drift equations
  • 7.10. Summary
  • 7.11. Delta-f versus total-f energetics
  • 7.12. Quasineutrality in Drift Dynamics
  • 8. Parallel dynamics--Alfvén/sound waves
  • 8.1. Introduction
  • 8.2. The four-field fluid drift model
  • 8.3. Wave-like motion
  • 8.4. Energetics, dissipation
  • 8.5. Transient responses to a disturbance
  • 8.6. Numerical examples
  • 8.7. Energetics and decay rates
  • 8.8. Thermal transport by the current
  • 8.9. Effects of temperature dynamics
  • 8.10. Summary
  • 9. Perpendicular dynamics--drift waves
  • 9.1. Introduction
  • 9.2. ExB advection in a gradient--the drift frequency
  • 9.3. Drift waves--the very simplest model
  • 9.4. Drift waves--polarisation and dispersion
  • 9.5. Drift waves--self-consistent dynamics
  • 9.6. Dissipation : phase shifts and energetics
  • 9.7. Alfvénic transients
  • 9.8. Numerical examples
  • 9.9. Drift Alfvén waves--the magnetic flutter effect
  • 9.10. Reactive instabilities
  • 9.11. Mode structure
  • 9.12. Summary
  • 10. Mode structure diagnostics
  • 10.1. Introduction
  • 10.2. Temporal diagnostics
  • 10.3. Spectral diagnostics
  • 10.4. Energetics
  • 10.5. Correlations
  • 10.6. Linear growth phase versus turbulence
  • 10.7. Randomness
  • 10.8. Cross coherence
  • 10.9. Interscale transfer
  • 10.10. Three-dimensional diagnostics
  • 10.11. Summary--mode structure in turbulence
  • 11. Three-dimensional drift wave turbulence
  • 11.1. Introduction
  • 11.2. Drift Alfvén model and energetics
  • 11.3. Periodic cases
  • 11.4. Aspect ratio
  • 11.5. Bounded cases
  • 11.6. Cases with magnetic shear
  • 11.7. On pathology
  • 11.8. Summary
  • 12. Drift wave turbulence in a sheared magnetic field
  • 12.1. Introduction
  • 12.2. Field line connection and magnetic shear
  • 12.3. The 2D sheared slab model
  • 12.4. Linear stability of electrostatic drift waves
  • 12.5. Magnetic shear in 3D--field-aligned coordinates
  • 12.6. Self-sustained drift wave turbulence
  • 12.7. Magnetic shear and drift wave mode structure
  • 12.8. Electromagnetic effects
  • 12.9. Contingent role of linear stability
  • 12.10. Summary
  • 13. MHD interchange turbulence
  • 13.1. Introduction
  • 13.2. Magnetic divergences and the interchange model
  • 13.3. Interchange energetics
  • 13.4. The 2D interchange model
  • 13.5. The ideal interchange mode
  • 13.6. 2D interchange turbulence
  • 13.7. Radial flows versus zonal flows
  • 13.8. The mode structure of interchange turbulence
  • 13.9. A simple model of a toroidal magnetic field
  • 13.10. The ballooning mode
  • 13.11. Three dimensions--ballooning mode turbulence
  • 13.12. Curvature forcing and ballooning mode structure
  • 13.13. Electromagnetic and collisional effects
  • 13.14. Summary
  • 14. Toroidal drift Alfvén turbulence
  • 14.1. Introduction
  • 14.2. The toroidal drift Alfvén model
  • 14.3. Toroidal drift Alfvén turbulence
  • 14.4. The energetics of toroidal turbulence
  • 14.5. The mode structure of toroidal turbulence
  • 14.6. From the linear stage to turbulence
  • 14.7. Electromagnetic and collisional effects
  • 14.8. Warm ion effects
  • 14.9. Comparison to the control cases
  • 14.10. Summary
  • 15. Turbulence on open field lines
  • 15.1. Introduction--open field line geometry
  • 15.2. Model characteristics
  • 15.3. Effects on the turbulence
  • 15.4. Turbulence in a dipole magnetic field
  • 15.5. Summary
  • 16. Drift wave turbulence and flows
  • 16.1. Introduction--eddies and flows
  • 16.2. Kelvin-Helmholtz stability
  • 16.3. Sheared flows and decorrelation
  • 16.4. ExB flow energetics
  • 16.5. Effect of background flow shear
  • 16.6. Flow shear in warm-ion toroidal cases
  • 16.7. Properties of the flux surface average
  • 16.8. Zonal and equilibrium flows
  • 16.9. Self-generated zonal flows
  • 16.10. Summary
  • 17. Interlude.