Turbulence and instabilities in magnetised plasmas. Volume 1, Fluid drift turbulence /
Ever since the first observations of turbulent fluctuations in laboratory plasma experiments in the years around 1980, turbulence in magnetised plasmas has been a subject of vigorous interest in the field of plasma physics and magnetic confinement. The first of a two-volume set, this book begins wit...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2021]
|
Colección: | IOP (Series). Release 21.
IOP series in plasma physics. IOP ebooks. 2021 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Overview : magnetised plasma dynamics
- 1.1. Dynamics in plasmas
- 1.2. Magnetised plasmas
- 1.3. Outline of the work
- 2. Introduction to turbulence
- 2.1. Statistical nonlinearity and cascade dynamics
- 2.2. Eddy mitosis and the cascade model
- 2.3. The statistical nature of turbulence
- 2.4. Quadratic nonlinearity and three-wave coupling
- 2.5. Fluid turbulence--energy and enstrophy
- 2.6. MHD turbulence
- 2.7. Selective decay
- 2.8. How the turbulence becomes two-dimensional
- 2.9. Plan
- 3. Turbulence in two-dimensional systems
- 3.1. Various model systems
- 3.2. 2D hydrodynamic turbulence
- 3.3. 2D MHD turbulence
- 3.4. 2D electron MHD turbulence
- 3.5. 2D Hall MHD turbulence
- 3.6. Compressibility in MHD
- 4. Driven/dissipative turbulence
- 4.1. Parallel dynamics along the guide field
- 4.2. The model system for dissipative ExB turbulence
- 4.3. Turbulence in the adiabatic and hydrodynamic limits
- 4.4. Implication of the ion gyroradius
- 5. Absolute equilibrium ensembles
- 5.1. AEQ and the role of dissipation in turbulence
- 5.2. The conserved quantities and equipartition
- 5.3. The phase space of degrees of freedom
- 5.4. Computational verification
- 5.5. Equipartition among the energies
- 5.6. Reintroduction of dissipation
- 6. Fluid electrodynamics in a plasma
- 6.1. Introduction
- 6.2. Ideal fluid equations and electrodynamics
- 6.3. High frequency motion under fluid electrodynamics
- 6.4. Quasineutral motion in a neutral plasma
- 6.5. Fluid plasma dynamics under quasineutrality
- 6.6. E Pluribus Unum--the steps to MHD
- 6.7. MHD waves--Alfvén waves
- 6.8. Energetics of the ideal fluid dynamical systems
- 6.9. Dissipation--corrections to the ideal plasma
- 6.10. Chapman-Enskog procedure--dissipation
- 6.11. The moment approach--diamagnetic fluxes
- 7. Fluid drift dynamics in a magnetised plasma
- 7.1. Introduction
- 7.2. What the drift approximation is
- 7.3. Perpendicular force balance--diamagnetic current
- 7.4. Parallel dynamics-shear Alfvén nonlinearity
- 7.5. Perpendicular force balance--fluid drifts
- 7.6. The polarisation drift
- 7.7. Drift ordering and 'delta-f'
- 7.8. Derivation of the fluid drift equations
- 7.9. Energetics of the fluid drift equations
- 7.10. Summary
- 7.11. Delta-f versus total-f energetics
- 7.12. Quasineutrality in Drift Dynamics
- 8. Parallel dynamics--Alfvén/sound waves
- 8.1. Introduction
- 8.2. The four-field fluid drift model
- 8.3. Wave-like motion
- 8.4. Energetics, dissipation
- 8.5. Transient responses to a disturbance
- 8.6. Numerical examples
- 8.7. Energetics and decay rates
- 8.8. Thermal transport by the current
- 8.9. Effects of temperature dynamics
- 8.10. Summary
- 9. Perpendicular dynamics--drift waves
- 9.1. Introduction
- 9.2. ExB advection in a gradient--the drift frequency
- 9.3. Drift waves--the very simplest model
- 9.4. Drift waves--polarisation and dispersion
- 9.5. Drift waves--self-consistent dynamics
- 9.6. Dissipation : phase shifts and energetics
- 9.7. Alfvénic transients
- 9.8. Numerical examples
- 9.9. Drift Alfvén waves--the magnetic flutter effect
- 9.10. Reactive instabilities
- 9.11. Mode structure
- 9.12. Summary
- 10. Mode structure diagnostics
- 10.1. Introduction
- 10.2. Temporal diagnostics
- 10.3. Spectral diagnostics
- 10.4. Energetics
- 10.5. Correlations
- 10.6. Linear growth phase versus turbulence
- 10.7. Randomness
- 10.8. Cross coherence
- 10.9. Interscale transfer
- 10.10. Three-dimensional diagnostics
- 10.11. Summary--mode structure in turbulence
- 11. Three-dimensional drift wave turbulence
- 11.1. Introduction
- 11.2. Drift Alfvén model and energetics
- 11.3. Periodic cases
- 11.4. Aspect ratio
- 11.5. Bounded cases
- 11.6. Cases with magnetic shear
- 11.7. On pathology
- 11.8. Summary
- 12. Drift wave turbulence in a sheared magnetic field
- 12.1. Introduction
- 12.2. Field line connection and magnetic shear
- 12.3. The 2D sheared slab model
- 12.4. Linear stability of electrostatic drift waves
- 12.5. Magnetic shear in 3D--field-aligned coordinates
- 12.6. Self-sustained drift wave turbulence
- 12.7. Magnetic shear and drift wave mode structure
- 12.8. Electromagnetic effects
- 12.9. Contingent role of linear stability
- 12.10. Summary
- 13. MHD interchange turbulence
- 13.1. Introduction
- 13.2. Magnetic divergences and the interchange model
- 13.3. Interchange energetics
- 13.4. The 2D interchange model
- 13.5. The ideal interchange mode
- 13.6. 2D interchange turbulence
- 13.7. Radial flows versus zonal flows
- 13.8. The mode structure of interchange turbulence
- 13.9. A simple model of a toroidal magnetic field
- 13.10. The ballooning mode
- 13.11. Three dimensions--ballooning mode turbulence
- 13.12. Curvature forcing and ballooning mode structure
- 13.13. Electromagnetic and collisional effects
- 13.14. Summary
- 14. Toroidal drift Alfvén turbulence
- 14.1. Introduction
- 14.2. The toroidal drift Alfvén model
- 14.3. Toroidal drift Alfvén turbulence
- 14.4. The energetics of toroidal turbulence
- 14.5. The mode structure of toroidal turbulence
- 14.6. From the linear stage to turbulence
- 14.7. Electromagnetic and collisional effects
- 14.8. Warm ion effects
- 14.9. Comparison to the control cases
- 14.10. Summary
- 15. Turbulence on open field lines
- 15.1. Introduction--open field line geometry
- 15.2. Model characteristics
- 15.3. Effects on the turbulence
- 15.4. Turbulence in a dipole magnetic field
- 15.5. Summary
- 16. Drift wave turbulence and flows
- 16.1. Introduction--eddies and flows
- 16.2. Kelvin-Helmholtz stability
- 16.3. Sheared flows and decorrelation
- 16.4. ExB flow energetics
- 16.5. Effect of background flow shear
- 16.6. Flow shear in warm-ion toroidal cases
- 16.7. Properties of the flux surface average
- 16.8. Zonal and equilibrium flows
- 16.9. Self-generated zonal flows
- 16.10. Summary
- 17. Interlude.