Cargando…

Flexible electronics. Volume 3, Energy devices and applications /

Flexible electronics is a fast-emerging field with the potential for huge industrial importance. Comprising three volumes, this work offers a cohesive, coherent and comprehensive overview of the field. Themes covered include mechanical theory, materials science aspects, fabrication technologies, dev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Khanna, Vinod Kumar, 1952- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • part I. Energy devices. 1. Supercapacitors
  • 1.1. Types of capacitors
  • 1.2. Graphene supercapacitor
  • 1.3. Fiber supercapacitor
  • 1.4. Two-ply yarn supercapacitor
  • 1.5. Discussion and conclusions
  • 2. Batteries
  • 2.1. Electrical battery
  • 2.2. Lithium-ion microbattery
  • 2.3. Lithium-ion paper battery with free-standing CNT thin films as current collectors
  • 2.4. Cable-type lithium-ion battery
  • 2.5. Out-of-plane deformable spiral-shaped lithium-ion battery
  • 2.6. Safer lithium-ion battery with a solid-like electrolyte
  • 2.7. Zinc-silver oxide battery with enhanced mechanical designs
  • 2.8. Stencil printed Zn-Ag2O alkaline battery on PET substrate
  • 2.9. Zn/MnO2 alkaline battery on mesh-embedded electrodes
  • 2.10. Discussion and conclusions
  • 3. Energy harvesters
  • 3.1. Introduction
  • 3.2. Triboelectric generator by stacking PET and Kapton sheets
  • 3.3. Triboelectric nanogenerator (TENG) cloth with lithium-ion battery (LIB) belt
  • 3.4. Piezoelectric PZT thin film nanogenerator (NG) on PET
  • 3.5. MEMS cantilever-based bimorph piezoelectric energy harvester (B-PEH)
  • 3.6. Piezoelectric PMN-PT thin film energy harvester on PET
  • 3.7. Arterial pulsewave energy harvester
  • 3.8. Energy harvester for roadways
  • 3.9. Thermal energy harvester
  • 3.10. Discussion and conclusions
  • 4. Solar cells
  • 4.1. Solar cell, module and panel
  • 4.2. Homogeneous P-N junction solar cell
  • 4.3. Heterojunction solar cell
  • 4.4. Solar cell performance indices
  • 4.5. Ultrathin and lightweight organic solar cell on PET film ([eta] = 4.2%)
  • 4.6. Amorphous silicon solar cell on a parylene template ([eta] = 5.78%)
  • 4.7. Si thin-film/PEDOT:PSS heterojunction inorganic/organic solar cell ([eta] = 10.15%)
  • 4.8. Monocrystalline silicon heterojunction solar cell on thin silicon substrate ([eta] = 14.9%)
  • 4.9. CIGS solar cell on PI substrate ([eta] = 18.7%)
  • 4.10. InAs/GaAs quantum dot (QD) solar cell on plastic film ([eta] = 10.5%)
  • 4.11. GaAs solar cell on PET substrate by low-pressure chemical welding ([eta] = 13.2%)
  • 4.12. GaAs solar cell on flexible substrate using AuBe/Pt/Au as a P-ohmic contact ([eta] = 22.08%)
  • 4.13. GaAs single-junction solar cell ([eta] = 27.6%) and GaAs tandem solar cell on flexible substrate ([eta] > 30%)
  • 4.14. High specific power InGaP/(In)GaAs tandem solar cell on PI tape by controlled spalling
  • 4.15. Discussion and conclusions
  • part II. Applications. 5. Displays and light-emission devices
  • 5.1. Introduction
  • 5.2. Active matrix electronic ink display with amorphous silicon TFTs on stainless steel foil
  • 5.3. Active matrix electronic ink display using solution-processed pentacene TFTs on polyimide foil
  • 5.4. Photoluminescent plasma display using organic materials on PET substrate
  • 5.5. Flexible OLED on PEN substrate with gas barrier film
  • 5.6. Monochrome AMOLED display on PEN foil
  • 5.7. Inkjet-printed TFT-driven OLED color display on PEN film
  • 5.8. GaN LED on polyimide substrate by laser lift-off from sapphire substrate and thermal release tape-assisted transfer
  • 5.9. GaN LED on PET substrate by LLO with PDMS stamp-aided transfer
  • 5.10. Pyramid-array based GaN LED on PET substrate by LLO and dual transfer processes
  • 5.11. GaN LED by LLO and direct transfer to polyimide substrate
  • 5.12. Discussion and conclusions
  • 6. CNT field emitters
  • 6.1. Field emission
  • 6.2. Field emission device with N-doped CNT/reduced graphene oxide film on polycarbonate substrate
  • 6.3. Field emitter with double-walled CNT thin film on PET
  • 6.4. Transparent field emission device with spray-coated SWCNT thin film on arylite substrate
  • 6.5. MWCNTs-implanted Ni foil FED for x-ray production
  • 6.6. Discussion and conclusions
  • 7. Sensors
  • 7.1. What is a sensor?
  • 7.2. Ultrathin silicon-based tactile sensor with spin-coated [P(VDF-TrFE)]
  • 7.3. Tactile sensors using screen printed [P(VDF-TrFE)] and MWCNT/PDMS nanocomposite on polyimide/PET substrates
  • 7.4. NH3 sensor with spray-deposited CNT thin film on polyimide substrate
  • 7.5. CO2 sensor with CNT thin film transferred from Si substrate to polyimide substrate
  • 7.6. NO2 sensor with LbL-SA MWCNTs on PET substrate
  • 7.7. NO2 sensor with LbL covalent bonding of graphene oxide on PET substrate and its in situ reduction to rGO
  • 7.8. NO2 sensor with MWCNTs-WO3 NPs on PET substrate
  • 7.9. Discussion and conclusions
  • 8. Memories
  • 8.1. Memory of a computer
  • 8.2. Flexible charge trap-type memory (f-CTM) TFT on PEN substrate
  • 8.3. Pentacene-based non-volatile memory (NVM) TFT on PES substrate
  • 8.4. Electrosprayed TiO2-based resistive memory device on PES substrate
  • 8.5. PEALD TiO2 crossbar memory device on PES substrate for resistive random access memory (RRAM)
  • 8.6. RRAM with one transistor-one memristor structure on PI substrate
  • 8.7. Write-once-read-many-times (WORM) memory polymeric device on polypyrrole substrate
  • 8.8. Metal/insulator/metal capacitor on (100) silicon fabric
  • 8.9. Discussion and conclusions
  • 9. Antennas and RFID tags
  • 9.1. RFID system preliminaries
  • 9.2. Bendable Cu/Ti antenna on SU-8/PDMS substrate
  • 9.3. Stretchable Ag NW antenna on PDMS substrate
  • 9.4. Flexible and stretchable UHF RFID tag with Ag antenna on 3D printed NinjaFlex substrate
  • 9.5. Wearable e-textile UHF RFID tag for body-centric systems
  • 9.6. Flexible cum stretchable embroidered e-fiber RFID antenna for an automotive tire
  • 9.7. Flexible 13.56 MHz RFCPU on plastic film
  • 9.8. Flexible 915 MHz UHF RFCPU
  • 9.9. Sensor interfacing with RFID tags on flexible foil
  • 9.10. Discussion and conclusions.