Cargando…

Flexible electronics. Volume 3, Energy devices and applications /

Flexible electronics is a fast-emerging field with the potential for huge industrial importance. Comprising three volumes, this work offers a cohesive, coherent and comprehensive overview of the field. Themes covered include mechanical theory, materials science aspects, fabrication technologies, dev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Khanna, Vinod Kumar, 1952- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750324564
003 IOP
005 20190816220608.0
006 m eo d
007 cr cn |||m|||a
008 190815s2019 enka ob 000 0 eng d
020 |a 9780750324564  |q ebook 
020 |a 9780750324571  |q mobi 
020 |z 9780750324540  |q print 
024 7 |a 10.1088/2053-2563/ab0d19  |2 doi 
035 |a (CaBNVSL)thg00979336 
035 |a (OCoLC)1112388774 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a TK7872.F54  |b K534 2019eb vol. 3 
072 7 |a TGM  |2 bicssc 
072 7 |a TEC021020  |2 bisacsh 
100 1 |a Khanna, Vinod Kumar,  |d 1952-  |e author. 
245 1 0 |a Flexible electronics.  |n Volume 3,  |p Energy devices and applications /  |c Vinod Kumar Khanna. 
246 3 0 |a Energy devices and applications. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2019] 
300 |a 1 online resource (various pagings) :  |b illustrations (chiefly color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 6] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20190701"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a part I. Energy devices. 1. Supercapacitors -- 1.1. Types of capacitors -- 1.2. Graphene supercapacitor -- 1.3. Fiber supercapacitor -- 1.4. Two-ply yarn supercapacitor -- 1.5. Discussion and conclusions 
505 8 |a 2. Batteries -- 2.1. Electrical battery -- 2.2. Lithium-ion microbattery -- 2.3. Lithium-ion paper battery with free-standing CNT thin films as current collectors -- 2.4. Cable-type lithium-ion battery -- 2.5. Out-of-plane deformable spiral-shaped lithium-ion battery -- 2.6. Safer lithium-ion battery with a solid-like electrolyte -- 2.7. Zinc-silver oxide battery with enhanced mechanical designs -- 2.8. Stencil printed Zn-Ag2O alkaline battery on PET substrate -- 2.9. Zn/MnO2 alkaline battery on mesh-embedded electrodes -- 2.10. Discussion and conclusions 
505 8 |a 3. Energy harvesters -- 3.1. Introduction -- 3.2. Triboelectric generator by stacking PET and Kapton sheets -- 3.3. Triboelectric nanogenerator (TENG) cloth with lithium-ion battery (LIB) belt -- 3.4. Piezoelectric PZT thin film nanogenerator (NG) on PET -- 3.5. MEMS cantilever-based bimorph piezoelectric energy harvester (B-PEH) -- 3.6. Piezoelectric PMN-PT thin film energy harvester on PET -- 3.7. Arterial pulsewave energy harvester -- 3.8. Energy harvester for roadways -- 3.9. Thermal energy harvester -- 3.10. Discussion and conclusions 
505 8 |a 4. Solar cells -- 4.1. Solar cell, module and panel -- 4.2. Homogeneous P-N junction solar cell -- 4.3. Heterojunction solar cell -- 4.4. Solar cell performance indices -- 4.5. Ultrathin and lightweight organic solar cell on PET film ([eta] = 4.2%) -- 4.6. Amorphous silicon solar cell on a parylene template ([eta] = 5.78%) -- 4.7. Si thin-film/PEDOT:PSS heterojunction inorganic/organic solar cell ([eta] = 10.15%) -- 4.8. Monocrystalline silicon heterojunction solar cell on thin silicon substrate ([eta] = 14.9%) -- 4.9. CIGS solar cell on PI substrate ([eta] = 18.7%) -- 4.10. InAs/GaAs quantum dot (QD) solar cell on plastic film ([eta] = 10.5%) -- 4.11. GaAs solar cell on PET substrate by low-pressure chemical welding ([eta] = 13.2%) -- 4.12. GaAs solar cell on flexible substrate using AuBe/Pt/Au as a P-ohmic contact ([eta] = 22.08%) -- 4.13. GaAs single-junction solar cell ([eta] = 27.6%) and GaAs tandem solar cell on flexible substrate ([eta] > 30%) -- 4.14. High specific power InGaP/(In)GaAs tandem solar cell on PI tape by controlled spalling -- 4.15. Discussion and conclusions 
505 8 |a part II. Applications. 5. Displays and light-emission devices -- 5.1. Introduction -- 5.2. Active matrix electronic ink display with amorphous silicon TFTs on stainless steel foil -- 5.3. Active matrix electronic ink display using solution-processed pentacene TFTs on polyimide foil -- 5.4. Photoluminescent plasma display using organic materials on PET substrate -- 5.5. Flexible OLED on PEN substrate with gas barrier film -- 5.6. Monochrome AMOLED display on PEN foil -- 5.7. Inkjet-printed TFT-driven OLED color display on PEN film -- 5.8. GaN LED on polyimide substrate by laser lift-off from sapphire substrate and thermal release tape-assisted transfer -- 5.9. GaN LED on PET substrate by LLO with PDMS stamp-aided transfer -- 5.10. Pyramid-array based GaN LED on PET substrate by LLO and dual transfer processes -- 5.11. GaN LED by LLO and direct transfer to polyimide substrate -- 5.12. Discussion and conclusions 
505 8 |a 6. CNT field emitters -- 6.1. Field emission -- 6.2. Field emission device with N-doped CNT/reduced graphene oxide film on polycarbonate substrate -- 6.3. Field emitter with double-walled CNT thin film on PET -- 6.4. Transparent field emission device with spray-coated SWCNT thin film on arylite substrate -- 6.5. MWCNTs-implanted Ni foil FED for x-ray production -- 6.6. Discussion and conclusions 
505 8 |a 7. Sensors -- 7.1. What is a sensor? -- 7.2. Ultrathin silicon-based tactile sensor with spin-coated [P(VDF-TrFE)] -- 7.3. Tactile sensors using screen printed [P(VDF-TrFE)] and MWCNT/PDMS nanocomposite on polyimide/PET substrates -- 7.4. NH3 sensor with spray-deposited CNT thin film on polyimide substrate -- 7.5. CO2 sensor with CNT thin film transferred from Si substrate to polyimide substrate -- 7.6. NO2 sensor with LbL-SA MWCNTs on PET substrate -- 7.7. NO2 sensor with LbL covalent bonding of graphene oxide on PET substrate and its in situ reduction to rGO -- 7.8. NO2 sensor with MWCNTs-WO3 NPs on PET substrate -- 7.9. Discussion and conclusions 
505 8 |a 8. Memories -- 8.1. Memory of a computer -- 8.2. Flexible charge trap-type memory (f-CTM) TFT on PEN substrate -- 8.3. Pentacene-based non-volatile memory (NVM) TFT on PES substrate -- 8.4. Electrosprayed TiO2-based resistive memory device on PES substrate -- 8.5. PEALD TiO2 crossbar memory device on PES substrate for resistive random access memory (RRAM) -- 8.6. RRAM with one transistor-one memristor structure on PI substrate -- 8.7. Write-once-read-many-times (WORM) memory polymeric device on polypyrrole substrate -- 8.8. Metal/insulator/metal capacitor on (100) silicon fabric -- 8.9. Discussion and conclusions 
505 8 |a 9. Antennas and RFID tags -- 9.1. RFID system preliminaries -- 9.2. Bendable Cu/Ti antenna on SU-8/PDMS substrate -- 9.3. Stretchable Ag NW antenna on PDMS substrate -- 9.4. Flexible and stretchable UHF RFID tag with Ag antenna on 3D printed NinjaFlex substrate -- 9.5. Wearable e-textile UHF RFID tag for body-centric systems -- 9.6. Flexible cum stretchable embroidered e-fiber RFID antenna for an automotive tire -- 9.7. Flexible 13.56 MHz RFCPU on plastic film -- 9.8. Flexible 915 MHz UHF RFCPU -- 9.9. Sensor interfacing with RFID tags on flexible foil -- 9.10. Discussion and conclusions. 
520 3 |a Flexible electronics is a fast-emerging field with the potential for huge industrial importance. Comprising three volumes, this work offers a cohesive, coherent and comprehensive overview of the field. Themes covered include mechanical theory, materials science aspects, fabrication technologies, devices, and applications. 
521 |a Graduate students, researchers, some industry. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Vinod Kumar Khanna is a former Emeritus Scientist at CSIR-Central Electronics Engineering Research Institute, Pilani, India, and Emeritus Professor at the Academy of Scientific & Innovative Research, India. He is a retired Chief Scientist and Head of the MEMS & Microsensors Group, CSIR-CEERI, Pilani. 
588 0 |a Title from PDF title page (viewed on August 15, 2019). 
650 0 |a Flexible electronics. 
650 0 |a Electrical engineering  |x Equipment and supplies. 
650 7 |a Materials science.  |2 bicssc 
650 7 |a TECHNOLOGY & ENGINEERING / Materials Science / Electronic Materials.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750324540 
830 0 |a IOP (Series).  |p Release 6. 
830 0 |a IOP expanding physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-2456-4  |z Texto completo