Flexible electronics. Volume 2, Thin-film transistors /
Flexible electronics is a fast-emerging field with the potential for huge industrial importance. Comprising three volumes, this work offers a cohesive, coherent and comprehensive overview of the field. Themes covered include mechanical theory, materials science aspects, fabrication technologies, dev...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2019]
|
Colección: | IOP (Series). Release 6.
IOP expanding physics. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000nam a2200000 4500 | ||
---|---|---|---|
001 | IOP_9780750324533 | ||
003 | IOP | ||
005 | 20190816220638.0 | ||
006 | m eo d | ||
007 | cr cn |||m|||a | ||
008 | 190815s2019 enka ob 000 0 eng d | ||
020 | |a 9780750324533 |q ebook | ||
020 | |a 9780750324526 |q mobi | ||
020 | |z 9780750324502 |q print | ||
024 | 7 | |a 10.1088/2053-2563/ab0d18 |2 doi | |
035 | |a (CaBNVSL)thg00979335 | ||
035 | |a (OCoLC)1112388775 | ||
040 | |a CaBNVSL |b eng |e rda |c CaBNVSL |d CaBNVSL | ||
050 | 4 | |a TK7872.F54 |b K534 2019eb vol. 2 | |
072 | 7 | |a TGM |2 bicssc | |
072 | 7 | |a TEC021020 |2 bisacsh | |
082 | 0 | 4 | |a 621.381 |2 23 |
100 | 1 | |a Khanna, Vinod Kumar, |d 1952- |e author. | |
245 | 1 | 0 | |a Flexible electronics. |n Volume 2, |p Thin-film transistors / |c Vinod Kumar Khanna. |
246 | 3 | 0 | |a Thin-film transistors. |
264 | 1 | |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : |b IOP Publishing, |c [2019] | |
300 | |a 1 online resource (various pagings) : |b illustrations (chiefly color). | ||
336 | |a text |2 rdacontent | ||
337 | |a electronic |2 isbdmedia | ||
338 | |a online resource |2 rdacarrier | ||
490 | 1 | |a [IOP release 6] | |
490 | 1 | |a IOP expanding physics, |x 2053-2563 | |
500 | |a "Version: 20190701"--Title page verso. | ||
504 | |a Includes bibliographical references. | ||
505 | 0 | |a 1. Amorphous Si TFT -- 1.1. Thin-film transistor (TFT) -- 1.2. TFT configurations and structures -- 1.3. a-Si TFTs on polyimide foil substrates -- 1.4. Effects of uniaxial and biaxial strain on TFTs -- 1.5. TFTs on stainless steel foil substrates -- 1.6. TFTs on clear plastic (CP) foil substrates -- 1.7. Minimizing the shift in threshold voltage of TFT for reliable AMOLED operation -- 1.8. Discussion and conclusions | |
505 | 8 | |a 2. PolySi TFT -- 2.1. Introduction -- 2.2. PolySi TFT on PET -- 2.3. PolySi TFT on PES -- 2.4. PolySi TFT on PES or PAR -- 2.5. PolySi TFT on plastic film by laminating on glass carrier -- 2.6. Low-temperature <425 °C polySi TFT by SUFTLA -- 2.7. TFTs on stainless steel foil -- 2.8. Discussion and conclusions | |
505 | 8 | |a 3. Single-crystal Si TFT -- 3.1. Introduction -- 3.2. Transferrable single-crystal silicon nanomembranes (NMs) -- 3.3. SOI wafer process for Si NMs production, doping and transfer -- 3.4. Microwave TFT fabrication using Si NMs -- 3.5. TFTs on strained Si/SiGe/Si NMs | |
505 | 8 | |a 4. Metal-oxide TFT -- 4.1. Introduction -- 4.2. IGZO TFT with ESL on PEN substrate -- 4.3. IGZO TFT with cellulose fiber-based paper as substrate cum gate dielectric -- 4.4. IGZO TFT fabrication process by sol-gel route -- 4.5. IGZO TFT with organic gate dielectric/moisture barrier layers -- 4.6. Transparent Ni-doped ZnO TFT -- 4.7. TFT with PEALD ZnO layer -- 4.8. Discussion and conclusions | |
505 | 8 | |a 5. Small organic molecule TFT -- 5.1. Introduction -- 5.2. Pentacene TFT on PEN substrate -- 5.3. Bending effects on pentacene TFT -- 5.4. Pentacene and F16CuPc TFTs on PEN substrate for organic complementary circuit -- 5.5. N-type small-molecule perylene diimide TFT -- 5.6. DNTT TFTs and circuits -- 5.7. DNTT TFT-based digital library -- 5.8. Discussion and conclusions | |
505 | 8 | |a 6. Polymer TFT -- 6.1. Introduction -- 6.2. P3HT TFT on polycarbonate substrate -- 6.3. PTAA TFT on PET foil -- 6.4. PDQT TFT array on PET substrate -- 6.5. Ultrathin, disintegrable PDPP-PD polymer TFT and logic circuits on cellulose substrate -- 6.6. FBT-TH4(1, 4) TFT on PEN substrate -- 6.7. Discussion and conclusions | |
505 | 8 | |a 7. Organic single-crystal TFT -- 7.1. Introduction -- 7.2. Rubrene single-crystal TFT -- 7.3. BPEA single-crystal TFT -- 7.4. Speedier process of building large arrays of organic single crystals -- 7.5. CuPc and F16CuPc TFTs on 15 [mu]m diameter Au wire -- 7.6. Discussion and conclusions | |
505 | 8 | |a 8. Electrolyte-gated organic FET (EGOFET) and organic electrochemical FET (OECFET) -- 8.1. Introduction -- 8.2. Principle of electrolyte-gate organic FET (EGOFET) -- 8.3. Organic electrochemical TFT (OECFET) -- 8.4. EGOFET and OECFET with water as gate dielectric -- 8.5. Polyelectrolyte-gated EGOTFTs of different architectures -- 8.6. Vertical architecture OECFET -- 8.7. Fiber-embedded EGOFET/OECFET for e-textiles -- 8.8. Discussion and conclusions | |
505 | 8 | |a 9. 2D-material TFT -- 9.1. Introduction -- 9.2. Graphene TFT on polyimide -- 9.3. Graphene TFT on transparent PEN substrate -- 9.4. Graphene TFT on flexible glass -- 9.5. MoS2 TFT on Kapton (polyimide) -- 9.6. WS2 TFT on solution-cast PI substrate -- 9.7. WSe2 TFT on a PET substrate | |
505 | 8 | |a 10. CNT FET -- 10.1. Introduction -- 10.2. High-mobility SWCNT TFT on spin-coated PI substrate -- 10.3. Semiconductor-enriched CNT-based TFT on spin-coated PI substrate for active-matrix backplane -- 10.4. CNT TFT with high current on-off ratio on a Kapton substrate -- 10.5. Inkjet printed SWCNT TFT on PES substrate -- 10.6. All-inkjet printed 5 GHz CNT TFT on Kapton polyimide film -- 10.7. Gravure printed SWCNT-based TFT for D flip-flop, half-adder and full-adder on PET foil -- 10.8. Inverse gravure-printed CNT TFT on a PET substrate with solution-deposited SWCNTs -- 10.9. All-CNT TFT on PEN substrate using a photosensitive dry film -- 10.10. Discussion and conclusions | |
505 | 8 | |a 11. Nanowire FET -- 11.1. Introduction -- 11.2. Ge/Si NW FET on PI film -- 11.3. P-type Si/SiO2 NW TFT on PEEK -- 11.4. P-type Si/SiO2 NW TFT on Mylar -- 11.5. TFT on a PET substrate by the SNAP NW transfer approach -- 11.6. Discussion and conclusions. | |
520 | 3 | |a Flexible electronics is a fast-emerging field with the potential for huge industrial importance. Comprising three volumes, this work offers a cohesive, coherent and comprehensive overview of the field. Themes covered include mechanical theory, materials science aspects, fabrication technologies, devices, and applications. | |
521 | |a Graduate students, researchers, some industry | ||
530 | |a Also available in print. | ||
538 | |a Mode of access: World Wide Web. | ||
538 | |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. | ||
545 | |a Vinod Kumar Khanna is a former Emeritus Scientist at CSIR-Central Electronics Engineering Research Institute, Pilani, India, and Emeritus Professor at the Academy of Scientific & Innovative Research, India. He is a retired Chief Scientist and Head of the MEMS & Microsensors Group, CSIR-CEERI, Pilani. | ||
588 | 0 | |a Title from PDF title page (viewed on August 15, 2019). | |
650 | 0 | |a Flexible electronics. | |
650 | 0 | |a Thin film transistors. | |
650 | 7 | |a Materials science. |2 bicssc | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Materials Science / Electronic Materials. |2 bisacsh | |
710 | 2 | |a Institute of Physics (Great Britain), |e publisher. | |
776 | 0 | 8 | |i Print version: |z 9780750324502 |
830 | 0 | |a IOP (Series). |p Release 6. | |
830 | 0 | |a IOP expanding physics. | |
856 | 4 | 0 | |u https://iopscience.uam.elogim.com/book/978-0-7503-2453-3 |z Texto completo |