Cargando…

Flexible electronics. Volume 2, Thin-film transistors /

Flexible electronics is a fast-emerging field with the potential for huge industrial importance. Comprising three volumes, this work offers a cohesive, coherent and comprehensive overview of the field. Themes covered include mechanical theory, materials science aspects, fabrication technologies, dev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Khanna, Vinod Kumar, 1952- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750324533
003 IOP
005 20190816220638.0
006 m eo d
007 cr cn |||m|||a
008 190815s2019 enka ob 000 0 eng d
020 |a 9780750324533  |q ebook 
020 |a 9780750324526  |q mobi 
020 |z 9780750324502  |q print 
024 7 |a 10.1088/2053-2563/ab0d18  |2 doi 
035 |a (CaBNVSL)thg00979335 
035 |a (OCoLC)1112388775 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a TK7872.F54  |b K534 2019eb vol. 2 
072 7 |a TGM  |2 bicssc 
072 7 |a TEC021020  |2 bisacsh 
082 0 4 |a 621.381  |2 23 
100 1 |a Khanna, Vinod Kumar,  |d 1952-  |e author. 
245 1 0 |a Flexible electronics.  |n Volume 2,  |p Thin-film transistors /  |c Vinod Kumar Khanna. 
246 3 0 |a Thin-film transistors. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2019] 
300 |a 1 online resource (various pagings) :  |b illustrations (chiefly color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 6] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20190701"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Amorphous Si TFT -- 1.1. Thin-film transistor (TFT) -- 1.2. TFT configurations and structures -- 1.3. a-Si TFTs on polyimide foil substrates -- 1.4. Effects of uniaxial and biaxial strain on TFTs -- 1.5. TFTs on stainless steel foil substrates -- 1.6. TFTs on clear plastic (CP) foil substrates -- 1.7. Minimizing the shift in threshold voltage of TFT for reliable AMOLED operation -- 1.8. Discussion and conclusions 
505 8 |a 2. PolySi TFT -- 2.1. Introduction -- 2.2. PolySi TFT on PET -- 2.3. PolySi TFT on PES -- 2.4. PolySi TFT on PES or PAR -- 2.5. PolySi TFT on plastic film by laminating on glass carrier -- 2.6. Low-temperature <425 °C polySi TFT by SUFTLA -- 2.7. TFTs on stainless steel foil -- 2.8. Discussion and conclusions 
505 8 |a 3. Single-crystal Si TFT -- 3.1. Introduction -- 3.2. Transferrable single-crystal silicon nanomembranes (NMs) -- 3.3. SOI wafer process for Si NMs production, doping and transfer -- 3.4. Microwave TFT fabrication using Si NMs -- 3.5. TFTs on strained Si/SiGe/Si NMs 
505 8 |a 4. Metal-oxide TFT -- 4.1. Introduction -- 4.2. IGZO TFT with ESL on PEN substrate -- 4.3. IGZO TFT with cellulose fiber-based paper as substrate cum gate dielectric -- 4.4. IGZO TFT fabrication process by sol-gel route -- 4.5. IGZO TFT with organic gate dielectric/moisture barrier layers -- 4.6. Transparent Ni-doped ZnO TFT -- 4.7. TFT with PEALD ZnO layer -- 4.8. Discussion and conclusions 
505 8 |a 5. Small organic molecule TFT -- 5.1. Introduction -- 5.2. Pentacene TFT on PEN substrate -- 5.3. Bending effects on pentacene TFT -- 5.4. Pentacene and F16CuPc TFTs on PEN substrate for organic complementary circuit -- 5.5. N-type small-molecule perylene diimide TFT -- 5.6. DNTT TFTs and circuits -- 5.7. DNTT TFT-based digital library -- 5.8. Discussion and conclusions 
505 8 |a 6. Polymer TFT -- 6.1. Introduction -- 6.2. P3HT TFT on polycarbonate substrate -- 6.3. PTAA TFT on PET foil -- 6.4. PDQT TFT array on PET substrate -- 6.5. Ultrathin, disintegrable PDPP-PD polymer TFT and logic circuits on cellulose substrate -- 6.6. FBT-TH4(1, 4) TFT on PEN substrate -- 6.7. Discussion and conclusions 
505 8 |a 7. Organic single-crystal TFT -- 7.1. Introduction -- 7.2. Rubrene single-crystal TFT -- 7.3. BPEA single-crystal TFT -- 7.4. Speedier process of building large arrays of organic single crystals -- 7.5. CuPc and F16CuPc TFTs on 15 [mu]m diameter Au wire -- 7.6. Discussion and conclusions 
505 8 |a 8. Electrolyte-gated organic FET (EGOFET) and organic electrochemical FET (OECFET) -- 8.1. Introduction -- 8.2. Principle of electrolyte-gate organic FET (EGOFET) -- 8.3. Organic electrochemical TFT (OECFET) -- 8.4. EGOFET and OECFET with water as gate dielectric -- 8.5. Polyelectrolyte-gated EGOTFTs of different architectures -- 8.6. Vertical architecture OECFET -- 8.7. Fiber-embedded EGOFET/OECFET for e-textiles -- 8.8. Discussion and conclusions 
505 8 |a 9. 2D-material TFT -- 9.1. Introduction -- 9.2. Graphene TFT on polyimide -- 9.3. Graphene TFT on transparent PEN substrate -- 9.4. Graphene TFT on flexible glass -- 9.5. MoS2 TFT on Kapton (polyimide) -- 9.6. WS2 TFT on solution-cast PI substrate -- 9.7. WSe2 TFT on a PET substrate 
505 8 |a 10. CNT FET -- 10.1. Introduction -- 10.2. High-mobility SWCNT TFT on spin-coated PI substrate -- 10.3. Semiconductor-enriched CNT-based TFT on spin-coated PI substrate for active-matrix backplane -- 10.4. CNT TFT with high current on-off ratio on a Kapton substrate -- 10.5. Inkjet printed SWCNT TFT on PES substrate -- 10.6. All-inkjet printed 5 GHz CNT TFT on Kapton polyimide film -- 10.7. Gravure printed SWCNT-based TFT for D flip-flop, half-adder and full-adder on PET foil -- 10.8. Inverse gravure-printed CNT TFT on a PET substrate with solution-deposited SWCNTs -- 10.9. All-CNT TFT on PEN substrate using a photosensitive dry film -- 10.10. Discussion and conclusions 
505 8 |a 11. Nanowire FET -- 11.1. Introduction -- 11.2. Ge/Si NW FET on PI film -- 11.3. P-type Si/SiO2 NW TFT on PEEK -- 11.4. P-type Si/SiO2 NW TFT on Mylar -- 11.5. TFT on a PET substrate by the SNAP NW transfer approach -- 11.6. Discussion and conclusions. 
520 3 |a Flexible electronics is a fast-emerging field with the potential for huge industrial importance. Comprising three volumes, this work offers a cohesive, coherent and comprehensive overview of the field. Themes covered include mechanical theory, materials science aspects, fabrication technologies, devices, and applications. 
521 |a Graduate students, researchers, some industry 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Vinod Kumar Khanna is a former Emeritus Scientist at CSIR-Central Electronics Engineering Research Institute, Pilani, India, and Emeritus Professor at the Academy of Scientific & Innovative Research, India. He is a retired Chief Scientist and Head of the MEMS & Microsensors Group, CSIR-CEERI, Pilani. 
588 0 |a Title from PDF title page (viewed on August 15, 2019). 
650 0 |a Flexible electronics. 
650 0 |a Thin film transistors. 
650 7 |a Materials science.  |2 bicssc 
650 7 |a TECHNOLOGY & ENGINEERING / Materials Science / Electronic Materials.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750324502 
830 0 |a IOP (Series).  |p Release 6. 
830 0 |a IOP expanding physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-2453-3  |z Texto completo