Cargando…

The structure of amorphous materials using molecular dynamics /

This reference text demonstrates how molecular dynamics can be used in practice to achieve a precise understanding of structural properties for systems devoid of any order beyond the first interatomic distances. The reader will learn the basic principles underlying molecular dynamics with a special...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Massobrio, C. (Carlo) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]
Colección:IOP (Series). Release 22.
IOP ebooks. 2022 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. Why this book?
  • 2. Amorphous materials via atomic-scale modeling
  • 2.1. The inspiring role of Glass Science
  • 2.2. From experiments to modelling : toward a connection with atomic-scale tools
  • 2.3. Accessing properties : direct and reciprocal space
  • 2.4. Describing the network topology
  • 2.5. Correlating structural and electronic properties
  • 2.6. Neutron scattering as experimental counterpart to MD
  • 3. Molecular dynamics to describe (amorphous) materials
  • 3.1. Molecular dynamics : what for?
  • 3.2. Beyond two-body potentials
  • 3.3. Potentials for iono-covalent systems
  • 3.4. Thermostats for molecular dynamics
  • 3.5. First-principles molecular dynamics via the Car-Parrinello method
  • 3.6. Getting acquainted with the total energy
  • 3.7. Glassy materials and FPMD : criteria and challenges
  • 4. A practical roadmap for FPMD on amorphous materials
  • 4.1. Choice of the description : classical potentials vs first-principles
  • 4.2. Methodology : the unavoidable choices to be made
  • 4.3. Creating a computer glass via MD : the initial conditions
  • 4.4. Production of trajectories and the setup of a thermal cycle
  • 4.5. Dealing with FPMD odds and ends (including non-adiabaticity) : the case of SiN
  • 4.6. The CPMD code and some thoughts on how to approach the 'code issue' : an autobiographical perspective
  • 5. Cases treated via classical molecular dynamics
  • 5.1. Learning about glasses from a Lennard-Jones monoatomic system
  • 5.2. Amorphization by solid-state reaction in a metallic alloy
  • 6. The atomic structure of disordered networks
  • 6.1. General consideration : where do we start from?
  • 6.2. The structure of liquid and glassy GeSe2
  • 6.3. The origin of the first-sharp diffraction peak
  • 6.4. FSDP in disordered network : some considerations before to go on
  • 6.5. Evidence of FSDP in SCC(k) : examples
  • 6.6. What to learn from SCC(k) vs Szz(k)
  • 6.7. Improving the description of chemical bonding
  • 7. The effect of pressure on the structure of glassy GeSe2 and GeSe4
  • 7.1. Is there any pressure left?
  • 7.2. GeSe2 under pressure : a density-driven transition
  • 7.3. GeSe4 under pressure : when theory and experiments agree
  • 8. Structural changes with composition in GexSe1-x glassy chalcogenides
  • 8.1. Composition makes the difference : early calculations on liquid GeSe4
  • 8.2. Glassy GeSe4 and glassy SiSe4 and the 'structural variability'
  • 8.3. Altering stoichiometry by adding Ge : glassy Ge2Se3
  • 9. Moving ahead, better and bigger : GeS2, GeSe9 and GeSe4 vs GeS4
  • 9.1. Introduction
  • 9.2. Glassy GeS2
  • 9.3. Glassy GeSe9
  • 9.4. Glassy GeS4 as compared to glassy GeSe4
  • 10. Accounting for dispersion forces : glassy GeTe4 and related examples
  • 10.1. Introduction
  • 10.2. Functional and dispersion forces : four models to understand their impact on glassy GeTe4
  • 10.3. Dispersion forces and disordered GeSe2 : can we make any progress?
  • 10.4. How to select the best dispersion prescription for glassy GeTe4? Part I
  • 10.5. How to select the best dispersion prescription for glassy GeTe4? Part II
  • 11. Ternary systems for applications : meeting the challenge
  • 11.1. Introduction
  • 11.2. Ge2Sb2Te5
  • 11.3. Ga10Ge15Te75
  • 12. Past, present and future
  • 12.1. Past : what else beyond structure?
  • 12.2. From past to present, from structural to thermal properties : thermal conductivity
  • 12.3. Future : the quest of quantitative predictions goes on, thoughts, recommendations and some very recent results.