Cargando…

External field and radiation stimulated breast cancer nanotheranostics /

Nano drug-delivery systems responding to cellular local stimuli, such as pH, temperature, reductive agent's activation, i.e. enzymes, could effectively provide passive-mode desirable release but fail in disease treatment following the biological rhythms of brain tumor. Undoubtedly, physical sti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Thorat, Nanasaheb D. (Editor ), Bauer, Joanna (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
IPEM-IOP series in physics and engineering in medicine and biology.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction to external field stimulation modalities
  • 1.1. Introduction
  • 1.2. External field stimulation modalities
  • 1.3. External field stimulation modalities for cancer theranostics
  • 1.4. Conclusion
  • 2. Physically responsive nanostructures in breast cancer theranostics
  • 2.1. Introduction
  • 2.2. Light-responsive systems
  • 2.3. Magnetically responsive systems
  • 2.4. Ultrasonic responsive system
  • 2.5. Ionizing radiation triggered system
  • 2.6. Future perspective
  • 3. Externally/physically stimulated breast cancer nanomedicine 3-1
  • 3.1. Introduction
  • 3.2. External/physical nanomedicine for breast cancers
  • 3.3. Conclusion and future scope
  • 4. Magnetically stimulated breast cancer nanomedicines
  • 4.1. Preface
  • 4.2. Introduction
  • 4.3. Tumor microenvironment and metastasis
  • 4.4. Current trends and challenges in breast cancer treatment
  • 4.5. Cancer nanomedicines
  • 4.6. Magnetic nanoparticles
  • 4.7. Magnetic field-induced breast tumor targeting
  • 4.8. Mechanism of magnetic targeting
  • 4.9. Magnetic hyperthermia in the breast cancer
  • 4.10. Mechanism of hyperthermia
  • 4.11. Conclusion and prospective
  • 5. Magneto-plasmonic stimulated breast cancer nanomedicine
  • 5.1. Introduction
  • 5.2. Breast cancer and its causes
  • 5.3. Existing breast cancer therapies
  • 5.4. Nanomaterial aspect of breast cancer therapy
  • 5.5. Mechanism of cellular uptake and accumulation of NPs in tumors
  • 5.6. Current status of clinical trials of nanomedicine based on MHT and PTT
  • 5.7. Toxicity of nanomaterials
  • 5.8. Conclusion
  • 6. Radiation and ultrasound stimulated breast cancer nanomedicine
  • 6.1. Introduction
  • 6.2. Radiation therapy
  • 6.3. Ultrasound therapy
  • 6.4. Toxicity concerns
  • 6.5. Conclusion
  • 7. Radiotherapy and breast cancer nanomedicine
  • 7.1. Radiotherapy
  • 7.2. Cancers and their staging based treatment modality
  • 7.3. Cancer nanomedicine
  • 7.4. Breast cancer
  • 7.5. Breast cancer nanomedicine
  • 7.6. Conclusion
  • 8. Ionizing radiation stimulated breast cancer nanomedicine
  • 8.1. Introduction
  • 8.2. X-rays and γ-rays radiation therapy
  • 8.3. Nanomaterials delivering radioisotope for internal radioisotope therapy
  • 8.4. Combined therapy
  • 8.5. Conclusions
  • 9. Strengths and limitations of physical stimulus in breast cancer nanomedicine
  • 9.1. Introduction
  • 9.2. Nanomedicine for tumor targeting
  • 9.3. Stimuli responsive/triggered nanomedicine for cancer theranostics
  • 9.4. Strengths and limitations of physical stimulus in breast cancer nanomedicine
  • 9.5. Discussion and general comment
  • 10. Pharmacokinetics of nanomedicine for breast cancer
  • 10.1. Introduction
  • 10.2. Nanobiotechnology-based platforms for breast cancer therapy
  • 10.3. Types of nanoformulations (nanomedicines) for breast cancer therapy
  • 10.4. Physicochemical properties of nanomedicines and their effects in pharmacokinetics and pharmacodynamics
  • 10.5. Selection criteria for nano drug delivery system
  • 10.6. Arsenal for drug delivery
  • 10.7. Importance of nanomedicines in pharmacokinetics of breast cancer therapy
  • 10.8. Pharmacokinetics of nanomedicines for breast cancer therapy
  • 10.9. Novel targeting approaches for improved pharmacokinetic and pharmacodynamic features for breast cancer therapy
  • 10.10. Advantages of nanomedicine in breast cancer therapy
  • 10.11. Potential pharmacokinetic benefits of nanomedicine
  • 10.12. Conclusion
  • 11. Clinical and preclinical trials of breast cancer
  • 11.1. Introduction
  • 11.2. Biology of breast cancer metastasis
  • 11.3. Nanomaterials used for breast cancer
  • 11.4. Concept of preclinical trials
  • 11.5. Concept of clinical trials
  • 11.6. Perspective
  • 12. Biological systems : a challenge for physical stimulation of cancer nanomedicine
  • 12.1. Introduction
  • 12..2 Commonly used physical stimulators in cancer nanomedicine
  • 12.3. Challenges of current cancer nanomedicine
  • 12.4. Conclusions and future directions.