Cargando…

Molecular theory of electric double layers /

The electrical double layer describes charge and potential distributions that form at the interface between electrolyte solutions and the surface of an object, and they play a fundamental role in chemical and electrochemical behaviour. Colloid science, electrochemistry, material science, and biology...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Petsev, D. N. (Dimiter Nikolov), 1962- (Autor), Swol, Frank van (Autor), Frink, Laura J. D. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction : a historical overview
  • 1.1. Charges and fields
  • 1.2. Electrostatics of systems with distributed charges
  • 1.3. The concept of electric double layer
  • part I. Theory. 2. The origin of charge at interfaces involving electrolyte solutions
  • 2.1. Effects of the surface chemical reactions and the charge regulation model
  • 2.2. Effects due to physical adsorption
  • 2.3. Structural effects on the ionic and solvent concentration at the interface
  • 3. Continuum models of the electric double layers
  • 3.1. The Poisson-Boltzmann equation
  • 3.2. Electric double layer models based on the Poisson-Boltzmann equation : exact and approximate solutions
  • 3.3. Beyond the Boltzmann distribution : the semiconductor-electrolyte interface
  • 3.4. Electrokinetic phenomena
  • 3.5. Deficiencies of the continuum approach
  • 4. Integral equation theory
  • 4.1. Background
  • 4.2. Percus-Yevick closure
  • 4.3. The hypernetted-chain closure
  • 4.4. The mean spherical approximation (MSA)
  • 4.5. Hard sphere mixtures
  • 4.6. The Ornstein-Zernike equations approach to studying electric double layers
  • 5. Perturbation and mean field theory
  • 5.1. Background
  • 5.2. Virial expansions
  • 5.3. Zwanzig's perturbation theory
  • 5.4. Mean field theory
  • 6. Density functional theory
  • 6.1. Density functional theory for electronic structure
  • 6.2. Density functional theory for classical fluids
  • 7. Classical-DFT for electrolyte interfaces
  • 7.1. Molecular models of electrolytes
  • 7.2. Classical-DFT for point-charge electrolytes
  • 7.3. Classical-DFT for finite-size electrolytes
  • 7.4. Classical-DFT with correlations
  • 7.5. Classical-DFT with cohesive interactions
  • 7.6. Classical-DFT for systems with active surfaces
  • 7.7. Classical-DFT for water
  • 7.8. Classical-DFT for electrokinetic systems
  • part II. Structure of a single electric double layer : effects due to surface charge regulation and non-Coulombic interactions. 8. Molecular properties of a single electric double layer
  • 8.1. Classical density functional theory model of a single flat electric double layer
  • 8.2. Solution structure in an electric double layer with surface charge regulation
  • 8.3. Conclusions
  • 9. Ionic solvation effects and solvent-solvent interactions
  • 9.1. Solvation of the potential determining ions
  • 9.2. Solvation of the positive non-potential determining ions
  • 9.3. Solvation of the negative non-potential determining ions
  • 9.4. Effect of the solvent-solvent fluid interactions
  • 9.5. Conclusions
  • 10. Surface solvation and non-Coulombic ion-surface interactions
  • 10.1. Solvent-surface interactions. Solvophilic and solvophobic surfaces
  • 10.2. Effect of the non-Coulombic interactions between the potential determining ions and the charged wall
  • 10.3. Effect of the non-Coulombic positive ions--surface interactions
  • 10.4. Effect of the non-Coulombic negative ions--surface interactions
  • 10.5. Conclusions
  • 11. The potential distribution in the electric double layer and its relationship to the fluid charge
  • 11.1. The Poisson equation for structured electrolyte solutions
  • 11.2. Molecular interpretation of the Helmholtz planes, the Stern-Grahame layer, and the electrokinetic shear plane
  • 11.3. Conclusions
  • 12. Electric double layers containing multivalent ions
  • 12.1. Multivalent ion density profiles in the electric double layer
  • 12.2. Effect of the non-potential-determining ions valency on the density profiles of the potential determining ions in the electric double layer
  • 12.3. Non-Coulombic surface interactions, charge and potential distributions in the Stern-Grahame layer and beyond
  • 12.4. Conclusions
  • 13. Ionic size effects
  • 13.1. Ionic size variations and solution density
  • 13.2. Conclusions
  • part III. Numerical methods. 14. Molecular simulation : methods
  • 14.1. Background
  • 14.2. Molecular dynamics methods
  • 14.3. The potential distribution theorem (PDT)
  • 14.4. Simulation routes to the grand potential
  • 15. Molecular simulation : applications
  • 15.1. Background
  • 15.2. One-component plasma
  • 15.3. Molten salts
  • 15.4. Bulk electrolytes
  • 16. Numerical methods for classical-DFT
  • 16.1. Solution methods
  • 16.2. Algorithms for constructing phase diagrams.