Cargando…

Superconducting materials and their applications : an interdisciplinary approach /

The applications of superconducting materials have the potential to change our world, but descriptions of superconductivity in literature tend to be complex for non-physicists. This text provides an accessible account of superconductivity and its applications for an interdisciplinary readership. Thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yakhmi, Jatinder Vir (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]
Colección:IOP (Series). Release 21.
IOP ebooks. 2021 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction to superconductivity, superconducting materials and their usefulness
  • 1.1. Brief introduction to the phenomenon of superconductivity
  • 1.2. Does the resistance in the superconducting state really become zero?
  • 1.3. Flow of charge carriers in a metal, an insulator and a superconductor
  • 1.4. Meissner effect
  • 1.5. Superconducting elements, alloys, intermetallics and compounds
  • 1.6. Critical field, Hc
  • 1.7. Type I and type II superconductors
  • 1.8. Abrikosov vortices, flux line lattice and the mixed state
  • 1.9. BCS mechanism : flux quantization and energy gap
  • 1.10. Wires and cables from low Tc superconductors NbTi and Nb3Sn
  • 1.11. Techniques employed to evaluate the basic physical characteristics of superconducting materials
  • 2. High-Tc superconducting cuprates and magnesium boride
  • 2.1. Introduction
  • 2.2. Oxide superconductors, before cuprates
  • 2.3. Cuprate superconductors : La-Sr-Cu-O and Y-Ba-Cu-O
  • 2.4. Bi-, Tl- and Hg-based cuprate superconductors
  • 2.5. Spin-fluctuation as the pairing mechanism for high-Tc superconductors
  • 2.6. MgB2
  • 3. Materials contributing to physics of superconductivity, or holding potential for applications
  • 3.1. Chevrel phase superconductors
  • 3.2. Rare earth rhodium boride superconductors, MRh4B4
  • 3.3. Rare earth nickel borocarbides
  • 3.4. Heavy fermion superconductors
  • 3.5. Fe-pnictide superconductors
  • 3.6. Fe-selenide superconductors
  • 3.7. Hydride superconductors
  • 3.8. Organic superconductors
  • 3.9. Fulleride superconductors
  • 3.10. Superconducting materials--the continuing search
  • 3.11. Types of superconductivity
  • 4. Applications of bulk superconducting materials, and in high-field magnets
  • 4.1. Introduction
  • 4.2. Superconductor wires and cables for winding of magnets
  • 4.3. High field superconducting magnets for particle accelerators and colliders
  • 4.4. Superconducting magnets for nuclear fusion
  • 4.5. Superconducting RF cavities
  • 4.6. Superconducting magnets for MRI
  • 4.7. Superconducting magnets for maglev trains
  • 4.8. Superconductors in the power sector
  • 4.9. Use of HTSCs for power applications
  • 4.10. HTS power cable projects
  • 4.11. Superconducting switches and power transformers
  • 4.12. State-of-the-art superconducting fault current limiters
  • 4.13. Miscellaneous applications
  • 4.14. High-field magnets using HTSCs
  • 4.15. Use of HTS in superconducting cavities for accelerators
  • 4.16. Applications of MgB2 wires
  • 4.17. Other applications of superconductors
  • 4.18. Cryogenics
  • 5. Applications in Josephson junctions, SQUIDs, and MEG. Other low field applications
  • 5.1. From quantum concepts to superconducting technology : Josephson junctions and SQUIDs
  • 5.2. Josephson junction electronics, computers and detectors
  • 5.3. Measurement of ultra-low magnetic fields by SQUIDs
  • 5.4. Types of SQUIDs
  • 5.5. Applications of SQUID magnetometers and gradiometers
  • 5.6. SQUID sensors for magnetoencephalography and biomagnetic applications
  • 5.7. High-Tc SQUIDs
  • 6. Applications in the areas of diagnostics and neuroscience
  • 6.1. Brain imaging and cognitive neuroscience
  • 6.2. Neuro-diseases
  • 6.3. The salience network (SN)
  • 6.4. SN and the mesolimbic dopamine system
  • 6.5. Magnetic resonance perfusion
  • 6.6. BIO-interface
  • 6.7. Signal-space projection/separation for MEG data
  • 6.8. Evoked and induced responses
  • 6.9. Consequences of deprivation of sleep
  • 6.10. Non-destructive imaging of soft tissue using synchrotron radiation
  • 6.11. Carbon-ion radiotherapy
  • 7. Concluding remarks. Slow progress in the commercialization of potential HTS devices. New hopes. Emerging new applications
  • 7.1. Why is superconductivity so exciting?
  • 7.2. Factors hampering the commercial applications of high-Tc superconductors
  • 7.3. Limitations of hydride and organic superconductors to be overcome before their applications
  • 7.4. New emerging applications, including those of HTSCs.