Multimodality imaging. Volume 1, Deep learning applications /
This research and reference text explores the finer details of deep learning models. It provides a brief outline on popular models including convolution neural networks, deep belief networks, autoencoders and residual neural networks.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | Biswas, Mainak (Editor ), Suri, Jasjit S. (Editor ) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2022]
|
Colección: | IOP (Series). Release 22.
IOP ebooks. 2022 collection. |
Temas: | |
Acceso en línea: | Texto completo |
Ejemplares similares
-
Deep learning models for medical imaging /
por: Santosh, K. C., et al.
Publicado: (2022) -
Diagnostic biomedical signal and image processing applications with deep learning methods /
Publicado: (2023) -
Biomedical Imaging : Principles of Radiography, Tomography and Medical Physics /
por: Salditt, Tim, et al.
Publicado: (2017) -
Biomedical imaging : principles of radiography, tomography and medical physics /
por: Salditt, Tim
Publicado: (2017) -
3D DEEP LEARNING WITH PYTHON design and develop your computer vision model with 3D data using PyTorch3D and more /
por: Ma, Xudong
Publicado: (2022)