Cargando…

Fundamentals of quantum entanglement /

Quantum entanglement (QE) is undoubtedly one of the most, if not the most, mysterious and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fibre communications, in addition to teleportation and quantum computing, QE goes beyond fa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Duarte, F. J. (Frank J.) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
IOP series in coherent sources and applications.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. Introduction
  • 1.2. A few words on quantum mechanics
  • 1.3. Ward's observation
  • 1.4. History of quantum entanglement
  • 1.5. The field of quantum entanglement
  • 1.6. Fundamentals of Quantum Entanglement
  • 1.7. Intent
  • 2. Dirac's contribution
  • 2.1. Introduction
  • 2.2. Dirac's pair theory
  • 2.3. Dirac's notation
  • 2.4. Dirac's notation in N-slit interferometers
  • 2.5. Semi coherent interference
  • 2.6. From quantum probabilities to measurable intensities
  • 2.7. Dirac's identities
  • 3. The Einstein-Podolsky-Rosen (EPR) paper
  • 3.1. Introduction
  • 3.2. EPR's doubts on quantum mechanics
  • 3.3. EPR's definition of a correct theory
  • 4. The Schrödinger papers
  • 4.1. Introduction
  • 4.2. The first Schrödinger paper
  • 4.3. The second Schrödinger paper
  • 5. Wheeler's paper
  • 5.1. Introduction
  • 5.2. Wheeler's paper's significance to quantum theory
  • 5.3. Wheeler's paper's significance to quantum experiments
  • 6. The probability amplitude for quantum entanglement
  • 6.1. Introduction
  • 6.2. The Pryce-Ward paper
  • 6.3. Ward's doctoral thesis
  • 6.4. Summary
  • 7. The quantum entanglement experiment
  • 7.1. Introduction
  • 7.2. The quantum entanglement experiment
  • 7.3. Historical notes
  • 8. The annihilation quantum entanglement experiments
  • 8.1. Introduction
  • 8.2. The first three quantum entanglement experiments
  • 8.3. Further significance of the annihilation experiments
  • 9. The Bohm and Aharonov paper
  • 9.1. Introduction
  • 9.2. Significance to the development of quantum entanglement research
  • 9.3. Philosophy and physics
  • 10. Bell's theorem
  • 10.1. Introduction
  • 10.2. von Neumann's work
  • 10.3. Bell's theorem or Bell's inequalities
  • 10.4. An additional perspective on Bell's theorem
  • 10.5. Example
  • 10.6. More philosophy and physics
  • 11. Feynman's Hamiltonians
  • 11.1. Introduction
  • 11.2. Probability amplitudes via Hamiltonians à la Feynman
  • 11.3. Arrival to quantum entanglement probability amplitudes
  • 11.4. Discussion
  • 12. The second Wu quantum entanglement experiment
  • 12.1. Introduction
  • 12.2. Salient features
  • 12.3. Bell's theorem and hidden variables
  • 13. The hidden variable theory experiments
  • 13.1. Introduction
  • 13.2. Testing for local hidden variable theories
  • 13.3. Early optical experiment
  • 13.4. Observations and discussion
  • 14. The optical quantum entanglement experiments
  • 14.1. Introduction
  • 14.2. The Aspect experiments
  • 14.3. Observations and discussion
  • 15. The quantum entanglement probability amplitude 1947-1992
  • 15.1. Introduction
  • 15.2. The quantum entanglement probability amplitude 1947-92
  • 15.3. Observations and discussion
  • 16. The GHZ probability amplitudes
  • 16.1. Introduction
  • 16.2. The GHZ probability amplitudes
  • 16.3. Observations and discussion
  • 17. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2
  • 17.1. Introduction
  • 17.2. The meaning of the Dirac-Feynman probability amplitude
  • 17.3. The derivation of the quantum entanglement probability amplitude
  • 17.4. Identical states of polarization
  • 17.5. Discussion
  • 18. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2¹, 2², 2³, 2⁴, ... 2<U+0072>
  • 18.1. Introduction
  • 18.2. The quantum entanglement probability amplitude for n = N = 4
  • 18.3. The quantum entanglement probability amplitude for n = N = 8
  • 18.4. The quantum entanglement probability amplitude for n = N = 16
  • 18.5. The quantum entanglement probability amplitude for n = N = 2¹, 2², 2³, 2⁴ ...2<U+0072>
  • 18.6. Discussion
  • 19. The interferometric derivation of the quantum entanglement probability amplitudes for n = N = 3, 6
  • 19.1. Introduction
  • 19.2. The quantum entanglement probability amplitude for n = N = 3
  • 19.3. The quantum entanglement probability amplitude for n = N = 6
  • 19.4. Discussion
  • 20. What happens with the entanglement at n = 1 and N = 2?
  • 20.1. Introduction
  • 20.2. Reversibility : from entanglement to interference
  • 20.3. Schematics
  • 20.4. Experimental and theoretical perspectives
  • 20.5. Interference for N slits and n = 1
  • 21. Quantum entanglement probability amplitudes and Bell's theorem
  • 21.1. Introduction
  • 21.2. Probability amplitudes
  • 21.3. Quantum polarization
  • 21.4. Quantum probabilities and Bell's theorem
  • 21.5. Example
  • 21.6. Discussion
  • 22. Cryptography via quantum entanglement
  • 22.1. Introduction
  • 22.2. Measurement protocol
  • 22.3. Experiments
  • 23. Quantum entanglement and teleportation
  • 23.1. Introduction
  • 23.2. The mechanics of teleportation
  • 23.3. Technology
  • 24. Quantum entanglement and quantum computing
  • 24.1. Introduction
  • 24.2. Entropy
  • 24.3. Qbits
  • 24.4. Quantum entanglement and Pauli matrices
  • 24.5. Pauli matrices and quantum entanglement
  • 24.6. Quantum gates
  • 24.7. The Hadamard matrix and quantum entanglement
  • 24.8. Multiple entangled states
  • 24.9. Technology
  • 25. Space-to-space and space-to-Earth communications via quantum entanglement
  • 25.1. Introduction
  • 25.2. Space-to-space configurations
  • 25.3. The space-to-Earth experiment
  • 25.4. Further horizons
  • 26. Space-to-space quantum interferometric communications : an alternative to quantum entanglement communications?
  • 26.1. Introduction
  • 26.2. The generalized N-slit quantum interference equations
  • 26.3. The generation and transmission of interferometric characters
  • 26.4. The inherent quantum security mechanism
  • 26.5. Discussion
  • 27. Quanta pair sources for quantum entanglement experiments
  • 27.1. Introduction
  • 27.2. Positron-electron annihilation
  • 27.3. Atomic Ca emission
  • 27.4. Type I SPDC
  • 27.5. Type II SPDC
  • 27.6. Further horizons
  • 28. More on quantum entanglement
  • 28.1. Introduction
  • 28.2. Consequences of the EPR paper
  • 28.3. Hidden variable theories
  • 28.4. The perspectives of EPR and Schrödinger on quantum entanglement
  • 28.5. Indistinguishability and Dirac's identities
  • 28.6. Photon non-locality
  • 28.7. Discussion
  • 29. On the interpretation of quantum mechanics
  • 29.1. Introduction
  • 29.2. Quantum critical
  • 29.3. Pragmatic perspective
  • 29.4. Fundamental principles
  • 29.5. The Dirac-Feynman-Lamb doctrine
  • 29.6. The importance of the probability amplitude
  • 29.7. The best interpretation of quantum mechanics
  • 29.8. Discussion.