Cargando…

Scientific basis of the Royal College of Radiologists Fellowship : illustrated questions and answers /

Science and medicine have long been close partners; this is particularly true in radiology where the availability of imaging techniques is central to diagnosis. An understanding of the science underlying an imaging process enables the development of new or improved techniques, comprehension of the i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sperrin, Malcolm (Autor), Winder, Jon, 1942- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Edición:2nd edition.
Colección:IPEM-IOP series in physics and engineering in medicine and biology.
IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Basic physics
  • 1.1. The structure of the atom
  • 1.2. Characteristic radiation and atomic shells
  • 1.3. The electromagnetic spectrum I
  • 1.4. The electromagnetic spectrum II
  • 1.5. Luminescence
  • 1.6. Transverse waves
  • 1.7. Longitudinal waves
  • 1.8. The inverse square law
  • 1.9. Radioactivity in medicine
  • 1.10. Radioactive decay
  • 1.11. Exponential decay
  • 1.12. The half-life of a radionuclide
  • 1.13. Units and measurement
  • 1.14. Prefixes to units
  • 1.15. Full width at half maximum
  • 1.16. The point spread function
  • 1.17. Mathematical considerations
  • 1.18. Contrast agents I
  • 1.19. Contrast agents II
  • 2. X-ray imaging
  • 2.1. Projection imaging
  • 2.2. Radiography
  • 2.3. Magnification in radiography
  • 2.4. The quality of an x-ray beam
  • 2.5. Image quality
  • 2.6. Plain film x-ray tomography
  • 2.7. Fluoroscopy technology
  • 2.8. Image intensifier
  • 2.9. Fluoroscopy radiation dose
  • 2.10. Image quality in fluoroscopy
  • 2.11. High kV technique
  • 2.12. Mammography x-ray spectra
  • 2.13. Mammography spatial resolution
  • 2.14. Image quality in mammography
  • 2.15. Mammography technology
  • 2.16. Mammography compression
  • 2.17. Digital mammography
  • 2.18. Computed radiography I
  • 2.19. Computed radiography II
  • 2.20. Computed radiography : dynamic range
  • 2.21. Computed radiography cassettes
  • 2.22. Computed radiography detection process
  • 2.23. Direct (digital) radiography
  • 2.24. Detectors in direct radiography
  • 2.25. Breast tomosynthesis
  • 2.26. Fluoroscopy
  • 2.27. Fluoroscopy entrance surface dose
  • 3. Imaging theory
  • 3.1. Digital imaging fundamentals
  • 3.2. The isotropic voxel
  • 3.3. Digital image presentation
  • 3.4. Image digitisation
  • 3.5. Digital image matrix
  • 3.6. Digital image computer displays
  • 3.7. Spatial resolution in imaging systems
  • 3.8. Picture archive and communication system I
  • 3.9. Picture archive and communication system II
  • 3.10. Image quality
  • 3.11. Partial volume effect
  • 3.12. Image processing in radiological imaging
  • 3.13. Spatial resolution in medical imaging
  • 3.14. Multimodality imaging
  • 3.15. Common imaging themes I
  • 3.16. Common imaging themes II
  • 3.17. Common imaging themes III
  • 3.18. Modulation transfer function
  • 4. Radiation protection
  • 4.1. Radiation dose reduction in pregnancy
  • 4.2. The ALARA principle
  • 4.3. Types of radiation effects
  • 4.4. Stochastic effects of radiation
  • 4.5. Absorbed dose
  • 4.6. Dose area product
  • 4.7. Radiation controlled areas
  • 4.8. Radiation biology
  • 4.9. Radiation safety of staff
  • 4.10. Practical radiation exposure reduction
  • 4.11. Ionizing radiation dose I
  • 4.12. Ionizing radiation dose II
  • 4.13. Safety in radiography I
  • 4.14. Safety in radiography II
  • 4.15. Safety in radionuclide imaging I
  • 4.16. Safety in radionuclide imaging II
  • 4.17. Radionuclide radiation protection
  • 5. Computed tomography
  • 5.1. Computed tomography back projection
  • 5.2. Technology in cone beam computed tomography
  • 5.3. The cone beam effect in computed tomography scanning
  • 5.4. Principles of computed tomography operation
  • 5.5. Multislice detectors in computed tomography
  • 5.6. Spatial resolution in computed tomography
  • 5.7. Computed tomography image reconstruction
  • 5.8. Computed tomography image presentation
  • 5.9. Computed tomography
  • 5.10. Computed tomography radiation dose
  • 5.11. Spectral computed tomography
  • 6. Ultrasound
  • 6.1. Ultrasound imaging : routine
  • 6.2. Ultrasound imaging : obstetrics
  • 6.3. Ultrasound imaging : image process
  • 6.4. Ultrasound imaging : transducer
  • 6.5. Harmonic imaging I
  • 6.6. Acoustic field
  • 6.7. Thermal index and mechanical index
  • 6.8. Image formation
  • 6.9. Artefacts
  • 6.10. Bioeffects
  • 6.11. Contrast agents
  • 6.12. The Doppler effect
  • 6.13. Power Doppler
  • 6.14. Duplex Doppler
  • 6.15. Harmonic imaging II
  • 6.16. Transducer design
  • 6.17. Improving the image
  • 6.18. Basic physics
  • 6.19. Physics of ultrasound I
  • 6.20. Physics of ultrasound II
  • 6.21. Ultrasound
  • 6.22. Safety in ultrasound
  • 7. Magnetic resonance imaging
  • 7.1. The source of the magnetic resonance signal
  • 7.2. Magnetic resonance signal : the net magnetic moment
  • 7.3. Magnetic resonance image contrast (image weighting)
  • 7.4. Transverse magnetization
  • 7.5. Metal artefacts in magnetic resonance imaging
  • 7.6. The spin echo pulse sequence
  • 7.7. Magnetic resonance safety : main magnetic field
  • 7.8. Magnetic resonance imaging parameters
  • 7.9. Magnetic resonance technology
  • 7.10. Gradient magnetic fields
  • 7.11. Relaxation times in magnetic resonance imaging
  • 7.12. Fast/turbo spin echo magnetic resonance imaging
  • 7.13. Fat suppression techniques
  • 7.14. Radio frequency safety
  • 7.15. Magnetic resonance image artefacts
  • 7.16. Magnetic resonance safety I
  • 7.17. Magnetic resonance controlled area
  • 7.18. Risks associated with magnetic resonance imaging
  • 7.19. Magnetic resonance safety II
  • 7.20. Magnetic resonance imaging environment
  • 7.21. Magnetic resonance safety III
  • 7.22. Magnetic resonance safety IV
  • 7.23. Gradient echo imaging
  • 7.24. Magnetic resonance imaging spatial encoding
  • 7.25. Magnetic resonance signal
  • 8. Nuclear medicine
  • 8.1. Gamma camera design
  • 8.2. The ideal isotope
  • 8.3. Quality assurance tests
  • 8.4. Dynamic studies
  • 8.5. Nuclear medicine risks
  • 8.6. Positron emission tomography I
  • 8.7. Single photon emission computed tomography I
  • 8.8. Combined positron emission tomography/computed tomography
  • 8.9. Collimators
  • 8.10. Resolution
  • 8.11. Bone scans
  • 8.12. Photomultiplier tubes
  • 8.13. Single photon emission computed tomography II
  • 8.14. Positron emission tomography II
  • 8.15. Positron emission tomography III
  • 8.16. Isotopes
  • 8.17. Radionuclide imaging I
  • 8.18. Radionuclide imaging II
  • 8.19. Positron emission tomography IV
  • 8.20. Positron emission tomography V
  • 9. Functional and molecular imaging
  • 9.1. Molecular imaging
  • 9.2. Functional and molecular imaging I
  • 9.3. Optical imaging
  • 9.4. Functional and molecular imaging II
  • 9.5. Functional and molecular imaging III
  • 9.6. Biological processes for functional and molecular imaging I
  • 9.7. Biological processes for functional and molecular imaging II.