Quantum mechanics of the diatomic molecule with applications /
Diatomic molecules consist of only two atoms. In this book, the authors describe how quantum mechanics can be used to predict diatomic molecule spectra in a gaseous state by discussing the calculation of their spectral line intensities. The book provides a comprehensive overview on diatomic molecule...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2020]
|
Colección: | IOP ebooks. 2020 collection.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- part I. Fundamentals of the diatomic molecule. 1. Primer on diatomic spectroscopy
- 1.1. Overview
- 1.2. Reversed angular momentum
- 1.3. Exact diatomic eigenfunction
- 1.4. Computation of diatomic spectra
- 2. Line strength computations
- 2.1. Introduction
- 2.2. Idealized computation of spectra
- 3. Framework of the Wigner-Witmer eigenfunction (WWE)
- 4. Derivation of the Wigner-Witmer eigenfunction
- 4.1. Outline of the derivation
- 4.2. Time translation symmetry
- 4.3. Spatial translation symmetry
- 4.4. Two-body symmetry
- 4.5. Time and spatial translations together
- 4.6. Rotational symmetry
- 5. Diatomic formula inferred from the Wigner-Witmer eigenfunction
- 6. Hund's cases (a) and (b)
- 6.1. Introduction
- 6.2. Case (b) basis functions
- 6.3. Case (a) eigenfunctions
- 7. Basis set for the diatomic molecule
- 8. Quantum theory of angular momentum
- 8.1. Introduction
- 8.2. The standard [pipe]JM> angular momentum representation
- 8.3. Rotations
- 8.4. Generators of coordinate transformations
- 9. Diatomic parity
- 9.1. Parity details
- 9.2. Parity designation
- 9.3. The parity operator
- 9.4. Parity and angular momentum
- 9.5. Diatomic parity
- 9.6. [Lambda] doublets
- 10. The Condon and Shortley line strength
- 11. Hönl-London line-strength factors in Hund's cases (a) and (b)
- 11.1. Case (a) basis functions
- 11.2. Case (b) basis functions
- 11.3. Mathematical properties of case (a) and case (b) basis functions
- 11.4. Diatomic parity operator
- 11.5. Hönl-London line-strength factors
- 11.6. Triple integral of three rotation matrix elements
- 11.7. Calculation of the Hönl-London line-strength factors for cases (a) and (b)
- 11.8. Hund's case (b) Hönl-London line-strength factors
- 11.9. The electronic-vibrational strength
- 12. Using the Morse potential in diatomic spectroscopy
- 12.1. Introduction
- 12.2. Morse eigenfunctions
- 12.3. Morse eigenfunctions as a vibrational basis
- part II. Selected applications of diatomic spectroscopy. 13. Introduction to applications of diatomic spectroscopy
- 14. Experimental arrangement for laser-plasma diagnosis
- 15. Cyanide, CN
- 15.1. Analysis of CO2 laser-plasma
- 15.2. Analysis of CN in Nd:YAG laser-plasma
- 15.3. Spatially and temporally resolved CN spectra
- 16. Diatomic carbon, C₂
- 16.1. Analysis of C₂ in Nd:YAG laser-plasma
- 16.2. Detailed fitting of C₂ spectra
- 16.3. Superposition spectra of hydrogen and carbon
- 17. Aluminium monoxide, AlO
- 17.1. Laser-induced breakdown spectroscopy
- 17.2. Experimental details for AlO measurements
- 17.3. Selected results
- 18. Hydroxyl, OH
- 19. Titanium monoxide, TiO
- 19.1. Introduction
- 19.2. Experiment
- 19.3. Results
- 20. Nitric oxide, NO
- 20.1. Experimental details
- 20.2. Results
- 20.3. Comparison with overview spectra
- part III. Appendices. A. Review of angular momentum commutators
- B. Effects of raising and lowering operators
- C. Modified Boltzmann plots
- D. Aspects of nitric oxide computations
- E. Parity in diatomic molecules
- F. Rotational line strengths for the CN BX (5,4) band
- G. Intrinsic parity of the diatomic molecule
- H. Review of diatomic laser-induced breakdown spectroscopy
- I. Program MorseFCF.for.