|
|
|
|
LEADER |
00000nam a2200000 4500 |
001 |
IOP_9780750319898 |
003 |
IOP |
005 |
20191210212354.0 |
006 |
m eo d |
007 |
cr cn |||m|||a |
008 |
191209s2020 enka ob 000 0 eng d |
020 |
|
|
|a 9780750319898
|q ebook
|
020 |
|
|
|a 9780750319416
|q mobi
|
020 |
|
|
|z 9780750318907
|q print
|
024 |
7 |
|
|a 10.1088/978-0-7503-1989-8
|2 doi
|
035 |
|
|
|a (CaBNVSL)thg00979831
|
035 |
|
|
|a (OCoLC)1130295081
|
040 |
|
|
|a CaBNVSL
|b eng
|e rda
|c CaBNVSL
|d CaBNVSL
|
050 |
|
4 |
|a QC174.13
|b .P377 2020eb
|
072 |
|
7 |
|a PHQ
|2 bicssc
|
072 |
|
7 |
|a SCI057000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.12
|2 23
|
100 |
1 |
|
|a Parigger, Christian G.,
|e author.
|
245 |
1 |
0 |
|a Quantum mechanics of the diatomic molecule with applications /
|c Christian G. Parigger and James O. Hornkoh.
|
264 |
|
1 |
|a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
|b IOP Publishing,
|c [2020]
|
300 |
|
|
|a 1 online resource (various pagings) :
|b illustrations (some color).
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a electronic
|2 isbdmedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
490 |
1 |
|
|a IOP ebooks. [2020 collection]
|
500 |
|
|
|a "Version: 20191101"--Title page verso.
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a part I. Fundamentals of the diatomic molecule. 1. Primer on diatomic spectroscopy -- 1.1. Overview -- 1.2. Reversed angular momentum -- 1.3. Exact diatomic eigenfunction -- 1.4. Computation of diatomic spectra
|
505 |
8 |
|
|a 2. Line strength computations -- 2.1. Introduction -- 2.2. Idealized computation of spectra
|
505 |
8 |
|
|a 3. Framework of the Wigner-Witmer eigenfunction (WWE) -- 4. Derivation of the Wigner-Witmer eigenfunction -- 4.1. Outline of the derivation -- 4.2. Time translation symmetry -- 4.3. Spatial translation symmetry -- 4.4. Two-body symmetry -- 4.5. Time and spatial translations together -- 4.6. Rotational symmetry
|
505 |
8 |
|
|a 5. Diatomic formula inferred from the Wigner-Witmer eigenfunction -- 6. Hund's cases (a) and (b) -- 6.1. Introduction -- 6.2. Case (b) basis functions -- 6.3. Case (a) eigenfunctions
|
505 |
8 |
|
|a 7. Basis set for the diatomic molecule -- 8. Quantum theory of angular momentum -- 8.1. Introduction -- 8.2. The standard [pipe]JM> angular momentum representation -- 8.3. Rotations -- 8.4. Generators of coordinate transformations
|
505 |
8 |
|
|a 9. Diatomic parity -- 9.1. Parity details -- 9.2. Parity designation -- 9.3. The parity operator -- 9.4. Parity and angular momentum -- 9.5. Diatomic parity -- 9.6. [Lambda] doublets
|
505 |
8 |
|
|a 10. The Condon and Shortley line strength -- 11. Hönl-London line-strength factors in Hund's cases (a) and (b) -- 11.1. Case (a) basis functions -- 11.2. Case (b) basis functions -- 11.3. Mathematical properties of case (a) and case (b) basis functions -- 11.4. Diatomic parity operator -- 11.5. Hönl-London line-strength factors -- 11.6. Triple integral of three rotation matrix elements -- 11.7. Calculation of the Hönl-London line-strength factors for cases (a) and (b) -- 11.8. Hund's case (b) Hönl-London line-strength factors -- 11.9. The electronic-vibrational strength
|
505 |
8 |
|
|a 12. Using the Morse potential in diatomic spectroscopy -- 12.1. Introduction -- 12.2. Morse eigenfunctions -- 12.3. Morse eigenfunctions as a vibrational basis
|
505 |
8 |
|
|a part II. Selected applications of diatomic spectroscopy. 13. Introduction to applications of diatomic spectroscopy -- 14. Experimental arrangement for laser-plasma diagnosis -- 15. Cyanide, CN -- 15.1. Analysis of CO2 laser-plasma -- 15.2. Analysis of CN in Nd:YAG laser-plasma -- 15.3. Spatially and temporally resolved CN spectra
|
505 |
8 |
|
|a 16. Diatomic carbon, C₂ -- 16.1. Analysis of C₂ in Nd:YAG laser-plasma -- 16.2. Detailed fitting of C₂ spectra -- 16.3. Superposition spectra of hydrogen and carbon
|
505 |
8 |
|
|a 17. Aluminium monoxide, AlO -- 17.1. Laser-induced breakdown spectroscopy -- 17.2. Experimental details for AlO measurements -- 17.3. Selected results
|
505 |
8 |
|
|a 18. Hydroxyl, OH -- 19. Titanium monoxide, TiO -- 19.1. Introduction -- 19.2. Experiment -- 19.3. Results
|
505 |
8 |
|
|a 20. Nitric oxide, NO -- 20.1. Experimental details -- 20.2. Results -- 20.3. Comparison with overview spectra
|
505 |
8 |
|
|a part III. Appendices. A. Review of angular momentum commutators -- B. Effects of raising and lowering operators -- C. Modified Boltzmann plots -- D. Aspects of nitric oxide computations -- E. Parity in diatomic molecules -- F. Rotational line strengths for the CN BX (5,4) band -- G. Intrinsic parity of the diatomic molecule -- H. Review of diatomic laser-induced breakdown spectroscopy -- I. Program MorseFCF.for.
|
520 |
3 |
|
|a Diatomic molecules consist of only two atoms. In this book, the authors describe how quantum mechanics can be used to predict diatomic molecule spectra in a gaseous state by discussing the calculation of their spectral line intensities. The book provides a comprehensive overview on diatomic molecule fundamentals before emphasising the applications of spectroscopy predictions in analysis of experimental data. With over 30 years of experience in measurements and quantitative analysis of recorded data, the authors communicate valuable references to any academic engaged in the field of spectroscopy and the book serves as a comprehensive guide to anyone with a genuine interest in the subject.
|
521 |
|
|
|a People engaged in the field of spectroscopy, or who have genuine interest in spectroscopy.
|
530 |
|
|
|a Also available in print.
|
538 |
|
|
|a Mode of access: World Wide Web.
|
538 |
|
|
|a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
|
545 |
|
|
|a Dr. Christian Parigger has been an Associate Professor of Physics and Astronomy at the University of Tennessee since 1996. His research interests include fundamental and applied spectroscopy, nonlinear optics, quantum optics, ultrafast phenomena, ultrasensitive diagnostics, lasers, combustion and plasma physics, optical diagnostics, biomedical applications, and in general, atomic and molecular and optical (AMO) Physics. His work encompasses experimental, theoretical and computational research together with teaching, service, and outreach at the Center for Laser Applications (CLA) at The University of Tennessee Space Institute, USA. The research contributions of James Hornkohl encompass spectroscopy of diatomic molecules and its applicarion to diagnosis of combustion, plasmas, rocket propulsion and related problems. The extensive collaboration of the two authors during more than 30 years at the CLA has been most stimulating and encouraging.
|
588 |
0 |
|
|a Title from PDF title page (viewed on December 9, 2019).
|
650 |
|
0 |
|a Quantum theory.
|
650 |
|
0 |
|a Diatomic molecules.
|
650 |
|
7 |
|a Quantum physics (quantum mechanics & quantum field theory).
|2 bicssc
|
650 |
|
7 |
|a SCIENCE / Physics / Quantum Theory.
|2 bisacsh
|
700 |
1 |
|
|a Hornkoh, James O.,
|e author.
|
710 |
2 |
|
|a Institute of Physics (Great Britain),
|e publisher.
|
776 |
0 |
8 |
|i Print version:
|z 9780750318907
|
830 |
|
0 |
|a IOP ebooks.
|p 2020 collection.
|
856 |
4 |
0 |
|u https://iopscience.uam.elogim.com/book/978-0-7503-1989-8
|z Texto completo
|