Nanoscale energy transport : emerging phenomena, methods and applications /
This book brings together leading names in the field of nanoscale energy transport to provide a comprehensive and insightful review of this developing topic. The text covers new developments in the scientific basis and the practical relevance of nanoscale energy transport, highlighting the emerging...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2020]
|
Colección: | IOP ebooks. 2020 collection.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 10. Investigation of nanoscale energy transport with time-resolved photoemission electron microscopy
- 10.1. Introduction
- 10.2. Unlocking high spatial-temporal resolution in studies of ultrafast dynamics in semiconductors
- 10.3. Studies of semiconductors utilizing TR-PEEM
- 10.4. Outlook and perspective of TR-PEEM technique
- 10.5. Final remarks
- 11. Exploring nanoscale heat transport via neutron scattering
- 11.1. Introduction
- 11.2. Inelastic neutron scattering and phonon transport
- 12. Thermal transport measurements of nanostructures using suspended micro-devices
- 12.1. Introduction
- 12.2. Suspended micro-device platform
- 12.3. Recent developments
- 12.4. Summary and outlook
- 13. Recent advances in structured surface enhanced condensation heat transfer
- 13.1. Introduction
- 13.2. Advancements in coating materials and the durability of coatings
- 13.3. Structured surfaces for low-surface-tension fluids
- 13.4. Electric field enhanced (EFE) condensation
- 14. Thermionic energy conversion
- 14.1. Introduction
- 14.2. History of thermionic converters
- 14.3. Theory of thermionic converters
- 14.4. Design of thermionic converters
- 14.5. Application of thermionic converters
- 14.6. Summary and future directions
- 15. Recent advances in frosting for heat transfer applications
- 15.1. Introduction
- 15.2. Classical condensation frosting theory
- 15.3. Anti-frosting superhydrophobic surfaces
- 15.4. Fabrication of superhydrophobic surfaces
- 15.5. Durability/robustness/fouling of superhydrophobic anti-frosting surfaces
- 15.6. Anti-frosting coatings for HVAC&R heat exchangers
- 15.7. Defrosting
- 16. Reliably measuring the efficiency of thermoelectric materials
- 16.1. Introduction
- 16.2. Prediction of efficiency from mathematical methods
- 16.3. Efficiency measurement
- 16.4. Double four-point probe method
- 16.5. Conclusions
- 17. Thermophotovoltaic energy conversion : materials and device engineering
- 17.1. Introduction
- 17.2. Framework for analyzing the performance of TPV systems
- 17.3. Discussion and summary
- Appendix : Emitter data.
- part I. Theory and computation. 1. Hydrodynamic phonon transport : past, present and prospects
- 1.1. Introduction
- 1.2. Collective phonon flow
- 1.3. Peierls-Boltzmann transport equation
- 1.4. Steady-state phonon hydrodynamics
- 1.5. Unsteady phonon hydrodynamics (second sound)
- 1.6. Summary and future perspectives
- 2. Higher-order phonon scattering : advancing the quantum theory of phonon linewidth, thermal conductivity and thermal radiative properties
- 2.1. Overview
- 2.2. Formalism of four-phonon scattering
- 2.3. Strong four-phonon scattering potential
- 2.4. Large four-phonon or suppressed three-phonon phase space
- 2.5. Further discussion
- 2.6. Summary and outlook
- 3. Pre-interface scattering influenced interfacial thermal transport across solid interfaces
- 4. Introduction to the atomistic Green's function approach : application to nanoscale phonon transport
- 4.1. Introduction
- 4.2. Atomistic Green's function
- 4.3. Recent progress
- 4.4. Summary
- 5. Application of Bayesian optimization to thermal science
- 5.1. Introduction
- 5.2. Bayesian optimization
- 5.3. Applications of Bayesian optimization in thermal science
- 5.4. Summary and perspectives
- 6. Phonon mean free path spectroscopy : theory and experiments
- 6.1. Introduction
- 6.2. Principles of MFP spectroscopy
- 6.3. Theory
- 6.4. Experiments
- 6.5. Summary
- 7. Thermodynamics of anharmonic lattices from first principles
- 7.1. Introduction
- 7.2. Overview : historical development
- 7.3. Modern interpretations and implementations
- 7.4. A recent extension to SCHA-4
- 7.5. Conclusions
- Appendix A. Thermodynamic properties of harmonic oscillators
- Appendix B. Normal modes and Gaussian averages
- Appendix C. Formal SCHA equations
- part II. Measurements and applications. 8. Experimental approaches for probing heat transfer and energy conversion at the atomic and molecular scales
- 8.1. Introduction
- 8.2. Theoretical concepts
- 8.3. Heat transfer and energy conversion at the atomic scale : experiments
- 8.4. Heat dissipation in atomic- and molecular-scale junctions
- 8.5. Peltier cooling in molecular-scale junctions
- 8.6. Measurement of thermal conductance of single-molecule junctions
- 8.7. Concluding remarks and outlook
- 9. Ultrafast thermal and magnetic characterization of materials enabled by the time-resolved magneto-optical Kerr effect
- 9.1. Introduction
- 9.2. TR-MOKE measurement technique
- 9.3. Thermal measurements
- 9.4. Ultrafast magnetization dynamics
- 9.5. Advanced capabilities for broader research directions
- 9.6. Summary and outlook