Cargando…

Engineering electrodynamics : a collection of theorems, principles and field representations /

Engineering Electrodynamics: A collection of theorems, principles, and field representations deals with key theorems and principles that form the pillars on which engineering electromagnetics rests. In contrast to previous books, the emphasis here is on the underlying mathematical theme that binds t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Janaswamy, Ramakrishna, 1958- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Maxwell's equations, potentials, and boundary conditions
  • 1.1. The time-domain Maxwell's equations
  • 1.2. Frequency domain Maxwell's equations
  • 1.3. Field determination by radial components
  • 2. Electrostatics and magnetostatics
  • 2.1. Energy related theorems in electrostatics
  • 2.2. Principle of virtual displacement for static fields
  • 2.3. Theorems related to harmonic functions
  • 3. Gauge invariance for electromagnetic fields
  • 3.1. Gauge invariance for general material media
  • 3.2. Gauge invariance in homogenized media
  • 4. Causality and dispersion
  • 4.1. Causal systems
  • 4.2. Dispersive systems
  • 4.3. Causal properties of scattering amplitude
  • 5. Uniqueness, energy, and momentum
  • 5.1. Uniqueness theorem
  • 5.2. Energy and momentum
  • 6. Duality principle and Babinet's principle
  • 6.1. Duality principle and Babinet's principle
  • 7. Electromagnetic reciprocity
  • 7.1. Reciprocity theorems in the frequency and time domains
  • 7.2. Compensation theorem
  • 8. Reactance theorems
  • 8.1. Reactance theorems for networks and antennas
  • 9. Geometrical optics and Fermat's principle
  • 9.1. Geometrical optics and Fermat's principle
  • 9.2. Gradient metasurfaces and the generalized Snell's law
  • 10. Integral field representations
  • 10.1. Integral representation of fields
  • 10.2. Integral equations, physical optics, and Bojarski's identity
  • 11. Induction theorem and optical theorem
  • 11.1. Induction and forward scattering theorems
  • 12. Eigenfunctions, Green's functions, and completeness
  • 12.1. Hilbert space
  • 12.2. Sturm-Liouville problem and Green's functions
  • 12.3. Classification of operators and their properties
  • 12.4. Sum of two commutative operators
  • 13. Electromagnetic degrees of freedom
  • 13.1. DoF between communicating volumes in free space
  • 13.2. Antenna gain limitations due to finite DoF
  • 14. Projection slice theorem and computed tomography
  • 14.1. Radon transform and projection slice theorem
  • 14.2. Computed tomography
  • 15. Free-space Green's function and its application in various coordinates
  • 15.1. Various forms of the free-space Green's function
  • 15.2. Canonical problems in various coordinate systems
  • 16. Asymptotic analysis
  • 16.1. Branch cuts for wave propagation
  • 16.2. Complex waves
  • 16.3. Asymptotic evaluation of integrals
  • 16.4. Examples in wave propagation
  • 16.5. Modified saddle point technique
  • 17. Covariant formulation of Maxwell's equations
  • 17.1. Preliminaries of tensor calculus
  • 17.2. The covariant form of Maxwell's equations in Euclidean pseudo-space
  • 17.3. Maxwell's equations in an arbitrary spacetime
  • 17.4. Covariant form of Maxwell's equations in stationary matter
  • 17.5. Transformational electromagnetics
  • 18. Maxwell's equations in the sense of distributions
  • 18.1. Preliminaries of distributions
  • 18.2. Derivation of boundary conditions using distributions
  • 19. Stochastic representations of wave phenomena
  • 19.1. Preliminaries of stochastic calculus
  • 19.2. Stochastic processes and Brownian motion
  • 19.3. Itô integral and Itô-Doeblin formula
  • 19.4. Solution of PDEs by stochastic technique, Feynman-Kac formulas.