Cargando…

Non-instantaneous impulsive differential equations : basic theory and computation /

Many real-life processes can be characterised by rapid changes in their state. Some of these changes begin impulsively and are not negligible. For changes such as these, mathematical models called non-instantaneous differential equations are created. These models give rise to a new, hybrid dynamical...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Wang, JinRong (Mathematics professor) (Autor), Fečkan, Michael (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 5.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750317047
003 IOP
005 20181223155440.0
006 m eo d
007 cr cn |||m|||a
008 181214s2018 enka ob 000 0 eng d
020 |a 9780750317047  |q ebook 
020 |a 9780750317030  |q mobi 
020 |z 9780750317023  |q print 
024 7 |a 10.1088/2053-2563/aada21  |2 doi 
035 |a (CaBNVSL)thg00978145 
035 |a (OCoLC)1080122327 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QA377  |b .W366 2018eb 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 515/.353  |2 23 
100 1 |a Wang, JinRong  |c (Mathematics professor),  |e author. 
245 1 0 |a Non-instantaneous impulsive differential equations :  |b basic theory and computation /  |c JinRong Wang, Michal Fečkan. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2018] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 5] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20181101"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Linear and perturbed equations -- 1.1. Stability analysis -- 1.2. Lyapunov regularity 
505 8 |a 2. Nonlinear differential equations -- 2.1. Continuous dependence and stability of solutions -- 2.2. Orbital Hausdorff dependence of the solutions -- 2.3. Differentiability of solutions 
505 8 |a 3. Semilinear evolution equations -- 3.1. First-order evolution equations -- 3.2. Second-order evolution equations 
505 8 |a 4. Periodic solutions -- 4.1. First-order autonomous evolution equations -- 4.2. First-order non-autonomous evolution equations -- 4.3. Second-order evolution equations. 
520 3 |a Many real-life processes can be characterised by rapid changes in their state. Some of these changes begin impulsively and are not negligible. For changes such as these, mathematical models called non-instantaneous differential equations are created. These models give rise to a new, hybrid dynamical system that can be used for many different purposes. Using a variety of equations, examples and solutions, this book will be an essential guide for researchers, graduate students and those interested in applied mathematics and related fields. 
521 |a This book is useful for researchers and graduate students studying evolution equations and other nonlinear problems with non-instantaneous impulsive effects as well as for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and related disciplines. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a JinRong Wang is a professor at Guizhou University in China and his expertise lies in numerical analysis, applied mathematics and differential equations. Michal Fečkan is a professor at Comenius University in Bratislava and his research focuses on analysis and applied mathematics as well as numerical modelling and numerical analysis. Both authors of this book are known internationally for their expertise in both impulsive and non-instantaneous impulsive differential equations. 
588 0 |a Title from PDF title page (viewed on December 14, 2018). 
650 0 |a Impulsive differential equations. 
650 7 |a Mathematical physics.  |2 bicssc 
650 7 |a SCIENCE / Physics / Mathematical & Computational.  |2 bisacsh 
700 1 |a Fečkan, Michael,  |e author. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750317023 
830 0 |a IOP (Series).  |p Release 5. 
830 0 |a IOP expanding physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-1704-7  |z Texto completo