Singularities in physics and engineering : properties, methods, and applications /
Singularities are pervasive throughout nature and this book is one of the first to combine all aspects of singular optics and to give a detailed view of the subject. Singularities in Optical Physics and Engineering give a thorough introduction to singularities and their development and goes on to ex...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2018]
|
Colección: | IOP (Series). Release 5.
IOP expanding physics. IOP series in advances in optics, photonics and optoelectronics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 1.1. Singularity
- 1.2. Singularities in science and engineering
- 1.3. Acoustic vortex
- 1.4. Singularities in optics
- 1.5. Amplitude, phase and polarization
- 1.6. Brief historical account of optical phase singularities
- 2. Topological features
- 2.1. Introduction
- 2.2. Wavefront shape
- 2.3. Amplitude and phase distribution of an optical vortex beam
- 2.4. Topological charge
- 2.5. Phase contours and zero crossings
- 2.6. Phase gradients of an optical vortex beam
- 2.7. Critical points
- 2.8. Zero crossings and bifurcation lines
- 2.9. Charge, order and index
- 2.10. Sign rules
- 2.11. Disintegrations or explosions
- 2.12. Charge conservation
- 2.13. Index conservation
- 2.14. Limitation on vortex density
- 2.15. Threads of darkness
- 2.16. Berry's paradox
- 2.17. Manifolds and trajectories
- 2.18. Links and knots
- 2.19. Different types of phase defects
- 3. Generation and detection methods
- 3.1. Introduction
- 3.2. Generation
- 3.3. Detection
- 4. Propagation characteristics
- 4.1. Introduction
- 4.2. Wave equations and solutions
- 4.3. Slowly varying envelope approximation--paraxial Helmholtz equation
- 4.4. Gouy phase
- 4.5. Divergence of singular beams
- 4.6. Near core vortex structure and propagation
- 4.7. Propagation dynamics of optical phase singularities
- 4.8. Propagation of vortices in non-linear media
- 5. Internal energy flows
- 5.1. Energy flow
- 5.2. Internal energy flows
- 5.3. Visualizing internal energy flow
- 5.4. Focusing of singular beams--effect of aberrations
- 5.5. Experimental detection
- 5.6. Energy circulations in diffraction patterns
- 6. Vortices in computational optics
- 6.1. Introduction
- 6.2. Diffused illumination in holography
- 6.3. Synthesized diffusers
- 6.4. Phase synthesis in computer generated holograms
- 6.5. Stagnation problem in IFTA
- 6.6. Solution to the speckle problem
- 6.7. Phase unwrapping in the presence of vortices
- 6.8. Non-Bryngdahl transforms using branch points
- 6.9. Diffraction of singular beams
- 6.10. Phase retrieval
- 7. Angular momentum of light
- 7.1. Introduction
- 7.2. Linear momentum
- 7.3. Angular momentum
- 7.4. Orbital and spin angular momentum of light
- 7.5. Intrinsic and extrinsic angular momenta
- 8. Applications
- 8.1. Metrology
- 8.2. Collimation testing
- 8.3. Spiral interferometry
- 8.4. Spatial filtering
- 8.5. Focal plane intensity manipulation
- 8.6. STED microscopy
- 8.7. Optical trapping and tweezers
- 8.8. Optically driven micro-motors
- 8.9. Communications
- 8.10. Phase retrieval methods
- 9. Polarization singularities
- 9.1. Polarization of light
- 9.2. Stokes parameters and Poincare sphere representation
- 9.3. Stokes fields
- 9.4. Ellipse field singularities
- 9.5. Vector field singularities
- 9.6. Stokes phase
- 9.7. Topological features of polarization singularities
- 9.8. Angular momentum in polarization singularities
- 9.9. Generation
- 9.10. Detection
- 9.11. Inversion and conversion methods
- 9.12. Polarization singularity distributions
- 9.13. Applications.