Cargando…

Singularities in physics and engineering : properties, methods, and applications /

Singularities are pervasive throughout nature and this book is one of the first to combine all aspects of singular optics and to give a detailed view of the subject. Singularities in Optical Physics and Engineering give a thorough introduction to singularities and their development and goes on to ex...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Senthilkumaran, Paramasivam (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 5.
IOP expanding physics.
IOP series in advances in optics, photonics and optoelectronics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. Singularity
  • 1.2. Singularities in science and engineering
  • 1.3. Acoustic vortex
  • 1.4. Singularities in optics
  • 1.5. Amplitude, phase and polarization
  • 1.6. Brief historical account of optical phase singularities
  • 2. Topological features
  • 2.1. Introduction
  • 2.2. Wavefront shape
  • 2.3. Amplitude and phase distribution of an optical vortex beam
  • 2.4. Topological charge
  • 2.5. Phase contours and zero crossings
  • 2.6. Phase gradients of an optical vortex beam
  • 2.7. Critical points
  • 2.8. Zero crossings and bifurcation lines
  • 2.9. Charge, order and index
  • 2.10. Sign rules
  • 2.11. Disintegrations or explosions
  • 2.12. Charge conservation
  • 2.13. Index conservation
  • 2.14. Limitation on vortex density
  • 2.15. Threads of darkness
  • 2.16. Berry's paradox
  • 2.17. Manifolds and trajectories
  • 2.18. Links and knots
  • 2.19. Different types of phase defects
  • 3. Generation and detection methods
  • 3.1. Introduction
  • 3.2. Generation
  • 3.3. Detection
  • 4. Propagation characteristics
  • 4.1. Introduction
  • 4.2. Wave equations and solutions
  • 4.3. Slowly varying envelope approximation--paraxial Helmholtz equation
  • 4.4. Gouy phase
  • 4.5. Divergence of singular beams
  • 4.6. Near core vortex structure and propagation
  • 4.7. Propagation dynamics of optical phase singularities
  • 4.8. Propagation of vortices in non-linear media
  • 5. Internal energy flows
  • 5.1. Energy flow
  • 5.2. Internal energy flows
  • 5.3. Visualizing internal energy flow
  • 5.4. Focusing of singular beams--effect of aberrations
  • 5.5. Experimental detection
  • 5.6. Energy circulations in diffraction patterns
  • 6. Vortices in computational optics
  • 6.1. Introduction
  • 6.2. Diffused illumination in holography
  • 6.3. Synthesized diffusers
  • 6.4. Phase synthesis in computer generated holograms
  • 6.5. Stagnation problem in IFTA
  • 6.6. Solution to the speckle problem
  • 6.7. Phase unwrapping in the presence of vortices
  • 6.8. Non-Bryngdahl transforms using branch points
  • 6.9. Diffraction of singular beams
  • 6.10. Phase retrieval
  • 7. Angular momentum of light
  • 7.1. Introduction
  • 7.2. Linear momentum
  • 7.3. Angular momentum
  • 7.4. Orbital and spin angular momentum of light
  • 7.5. Intrinsic and extrinsic angular momenta
  • 8. Applications
  • 8.1. Metrology
  • 8.2. Collimation testing
  • 8.3. Spiral interferometry
  • 8.4. Spatial filtering
  • 8.5. Focal plane intensity manipulation
  • 8.6. STED microscopy
  • 8.7. Optical trapping and tweezers
  • 8.8. Optically driven micro-motors
  • 8.9. Communications
  • 8.10. Phase retrieval methods
  • 9. Polarization singularities
  • 9.1. Polarization of light
  • 9.2. Stokes parameters and Poincare sphere representation
  • 9.3. Stokes fields
  • 9.4. Ellipse field singularities
  • 9.5. Vector field singularities
  • 9.6. Stokes phase
  • 9.7. Topological features of polarization singularities
  • 9.8. Angular momentum in polarization singularities
  • 9.9. Generation
  • 9.10. Detection
  • 9.11. Inversion and conversion methods
  • 9.12. Polarization singularity distributions
  • 9.13. Applications.