The Doppler method for the detection of exoplanets /
The study of exoplanets is one of the most vibrant fields of astrophysics today. Precise radial velocity (RV, or Doppler) measurements created the field by discovering the first exoplanets. Although employed for more than 30 years, RV measurements are still relevant today; when used with the transit...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2020]
|
Colección: | AAS-IOP astronomy. Release 2.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 1.1. The dawn of Doppler measurements
- 1.2. Early work on stellar radial velocity measurements
- 1.3. Toward precise stellar radial velocity measurements
- 1.4. The early hints of exoplanets
- 1.5. The 51 Peg revolution
- 1.6. The Doppler method
- 2. The instruments for Doppler measurements
- 2.1. Echelle spectrographs
- 2.2. Fourier transform spectrometers
- 2.3. Charge-coupled device detectors
- 3. Factors influencing the radial velocity measurement
- 3.1. Instrumental characteristics
- 3.2. Stellar characteristics
- 3.3. RV precision across spectral types
- 4. Simultaneous wavelength calibration
- 4.1. Instrumental shifts
- 4.2. Hollow cathode lamps
- 4.3. The telluric method
- 4.4. Gas absorption cells
- 4.5. Laser frequency combs
- 4.6. Fabry-Pérot etalons
- 4.7. The RV precision of modern spectrographs
- 5. Calculating the Doppler shifts : the cross-correlation method
- 5.1. Mathematical Formalism
- 5.2. Choice of template
- 5.3. CCF detection of spectroscopic binaries
- 5.4. Fahlman-Glaspey shift detection
- 6. The iodine cell method
- 6.1. The instrumental profile
- 6.2. Modeling the IP with the iodine cell method
- 6.3. Influence of changes in the IP
- 6.4. Ingredients for the iodine cell method
- 6.5. Calculation of the Doppler shift
- 6.6. Construction of an iodine cell
- 6.7. Closing remarks
- 7. Frequency analysis of time series data
- 7.1. Introduction
- 7.2. The discrete fourier transform
- 7.3. The Lomb-Scargle periodogram
- 7.4. The generalized Lomb-Scargle periodogram
- 7.5. The Bayesian generalized Lomb-Scargle periodogram
- 7.6. Comparison of the types of periodograms
- 7.7. The spectral window
- 7.8. The Nyquist frequency and aliasing
- 7.9. Frequency resolution
- 7.10. Assessing the statistical significance
- 7.11. Finding multiperiodic signals in your data
- 7.12. Required number of observations
- 7.13. Frequency versus period
- 8. Keplerian orbits
- 8.1. Orbital parameters
- 8.2. Describing the orbital motion
- 8.3. The radial velocity curve
- 8.4. The mass function
- 8.5. Mean orbital inclination
- 8.6. Eccentric orbits
- 8.7. Calculating Keplerian orbits
- 8.8. Dynamical effects
- 8.9. Barycentric corrections
- 9. Avoiding false planets : rotational modulation
- 9.1. Introduction
- 9.2. Spots
- 9.3. Plage and faculae
- 9.4. Granulation and convective blueshift
- 9.5. Testing for rotational modulation
- 10. Avoiding false planets : indicators of stellar activity
- 10.1. Activity indicators
- 10.2. Line depth ratios
- 10.3. Spectral line shapes
- 10.4. Chromatic RV variations
- 10.5. Use of individual lines
- 10.6. Radial velocity jitter
- 10.7. Activity cycles
- 10.8. Concluding remarks
- 11. Dealing with stellar activity
- 11.1. Fourier filtering
- 11.2. High pass filtering
- 11.3. Gaussian processes
- 11.4. A short comparison of filtering methods
- 11.5. The RV challenge
- 11.6. Toward earth analogs
- 12. Contributions to the error budget
- 12.1. Guiding errors
- 12.2. Changes in the instrumental setup
- 12.3. Detector errors
- 12.4. Errors in the Barycentric correction
- 12.5. The secular acceleration
- 12.6. Telluric line contamination
- 12.7. Moonlight contamination
- 13. The Rossiter-McLaughlin effect
- 13.1. Introduction
- 13.2. Origin of the Rossiter-McLaughlin effect
- 13.3. The Rossiter-McLaughlin effect in exoplanets
- 13.4. Spin axis of the star.