Cargando…

Hypersonic meteoroid entry physics /

Hypersonic Meteoroid Entry Physics gives a fascinating overview of the different aspects related to meteoroid atmospheric entry. The book covers meteoroid observations in outer space, the description of the chemical-physical phenomena during atmospheric entry, recovery of the meteor on the Earth...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Colonna, Gianpiero (Autor), Capitelli, M. (Autor), Laricchiuta, Annarita (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
IOP series in plasma physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Considerations on meteoroid entry physics. part I. Meteoroid and meteorite science. 2. The trajectory, structure and origin of the Chelyabinsk impactor
  • 2.1. Trajectory
  • 2.2. Structure
  • 2.3. Origin
  • 2.4. Implications
  • 3. Properties of meteoroids from forward scatter radio observations
  • 3.1. Radio meteor theory
  • 3.2. The BRAMS project
  • 3.3. Conclusions
  • 4. The flux of meteoroids over time : meteor emission spectroscopy and the delivery of volatiles and chondritic materials to Earth
  • 4.1. The meteor phenomenon and the origin of Earth's volatiles
  • 4.2. Meteor spectroscopy : an added value to Meteoritica
  • 4.3. Relative elemental abundances and cosmochemical ratios from photographic, video and CCD spectroscopy
  • 4.4. The Na overabundance : clues on the delivery of volatiles from fragile meteoroids and IDPs
  • 4.5. Astrobiological implications of the continuous arrival of chondritic components to Earth's surface
  • 4.6. Conclusions and future work
  • 5. Compositional, mineralogical and structural investigation of meteorites by XRD and LIBS
  • 5.1. The XRD technique
  • 5.2. The LIBS technique
  • 5.3. Conclusions and perspectives
  • part II. Hypersonic entry physics. 6. Radiation gas dynamics of centimeter meteoric bodies at an altitude of 80 km
  • 6.1. Computer RadGD model
  • 6.2. Numerical simulation results
  • 6.3. Conclusion
  • 7. Super-orbital entry of artificial asteroids (Apollo, Hayabusa) and CFD/radiation/thermal analysis of the entry of the Chelyabinsk meteorite
  • 7.1. A simplified model for meteoroid entry
  • 7.2. Entry of large meteoroids
  • 7.3. Heating
  • 7.4. Thermal analysis
  • 7.5. Conclusions
  • 8. High-enthalpy ionized flows
  • 8.1. Modeling of non-local thermodynamic equilibrium plasmas
  • 8.2. Self-consistent state-to-state approach
  • 8.3. The self-consistent model in hypersonic flows
  • 9. Precursor ionization during high-speed Earth entry
  • 9.1. Langmuir probe analysis
  • 9.2. Experimental set-up
  • 9.3. Test conditions
  • 9.4. Results
  • 9.5. Conclusions
  • 10. Response of the meteoroid/meteorite to aerodynamic forces and ablation
  • 10.1. Ablation models
  • 10.2. An example
  • 10.3. Porosity
  • 10.4. The presence of a fluid phase
  • 10.5. Creation of surface patterns
  • 10.6. Fragmentation processes
  • 10.7. Chemically reacting surfaces
  • 11. Experimental investigation of meteorites : ground test facilities
  • 11.1. The CP50 plasma torch facility at CentraleSupélec
  • 11.2. The PWT facility for testing meteorites at CIRA
  • 11.3. Optical emission spectroscopy (OES)
  • 11.4. Laser induced fluorescence spectroscopy (LIF)
  • 11.5. Ion beam analysis (IBA) on meteorites
  • 11.6. Infrared thermography
  • 11.7. The HEAT facility at SITAEL
  • 12. Advanced state-to-state and multi-temperature models for flow regimes
  • 12.1. General kinetic theory method for non-equilibrium flow modeling
  • 12.2. State-to state theoretical model of kinetics and transport properties
  • 12.3. Multi-temperature models for reacting air flows
  • 12.4. Multi-temperature models for flows containing CO2
  • 12.5. Conclusions
  • 13. State-to-state kinetics in CFD simulation of hypersonic flows using GPUs
  • 13.1. Physical model
  • 13.2. Numerical method
  • 13.3. Computational approach and hardware specifications
  • 13.4. Results
  • part III. Elementary processes in hypersonic flows. 14. Thermodynamic and transport properties of reacting air including ablated species
  • 14.1. The EquilTheTA code
  • 14.2. Thermodynamics and equilibrium
  • 14.3. Transport properties
  • 14.4. Conclusions
  • 15. Electron-molecule processes
  • 15.1. Non-resonant inelastic e-H2 collision processes
  • 15.2. Resonant inelastic e-H2 processes
  • 15.3. Resonant electron-induced reaction cross sections in Earth atmosphere molecules
  • 15.4. Non-resonant vibronic excitations in Earth atmosphere molecules
  • 15.5. Conclusion
  • 16. Heavy-particle elementary processes in hypersonic flows
  • 16.1. The quasi-classical method
  • 16.2. Energy transfer and dissociation of N2
  • 16.3. Specifics of O2-N2 collisions
  • 17. Non-empirical analytical model of non-equilibrium dissociation in high-temperature air
  • 17.1. Description of the Macheret-Fridman model
  • 17.2. Macheret-Fridman model for CFD
  • 17.3. Macheret-Fridman model for DSMC
  • 17.4. Concluding remarks
  • 18. The role of vibrational activation and bimolecular reactions in non-equilibrium plasma kinetics
  • 18.1. Reactive channels promoted by heavy-particle collisions
  • 18.2. The plasma kinetic model
  • 18.3. Conclusions.