Cargando…

Principles of biophotonics. Volume 2, Light emission, detection, and statistics /

This Volume 2 of Principles of Biophotonics continues to pour the foundation on which the next five volumes of optics and three volumes of methods will be built. While Volume 1 covered the mathematical apparatus to be used throughout the book, Volume 2 describes the emission, detection, and statisti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Popescu, Gabriel, 1971- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:IPEM-IOP series in physics and engineering in medicine and biology.
IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Electromagnetic fields
  • 1.1. Regions of the electromagnetic spectrum
  • 1.2. Spectral absorption of water
  • 1.3. Spectral absorption of hemoglobin
  • 1.4. Problems
  • 2. Radiometric properties of light
  • 2.1. Energy
  • 2.2. Energy density
  • 2.3. Power
  • 2.4. Temporal power spectrum
  • 2.5. Intensity : spatial power spectrum
  • 2.6. Irradiance
  • 2.7. Spectral irradiance
  • 2.8. Radiance
  • 2.9. Spectral radiance
  • 2.10. Exitance
  • 2.11. Spectral exitance
  • 2.12. Problems
  • 3. Photon-based radiometric quantities
  • 3.1. Number of photons
  • 3.2. Photon density
  • 3.3. Photon flux
  • 3.4. Photon temporal power spectrum
  • 3.5. Photon intensity
  • 3.6. Photon irradiance
  • 3.7. Photon spectral irradiance
  • 3.8. Photon radiance
  • 3.9. Photon spectral radiance
  • 3.10. Photon exitance
  • 3.11. Photon spectral exitance
  • 3.12. Problems
  • 4. Photometric properties of light
  • 4.1. Luminous energy
  • 4.2. Luminous flux
  • 4.3. Luminous energy density
  • 4.4. Luminous intensity
  • 4.5. Illuminance
  • 4.6. Luminance
  • 4.7. Problems
  • 5. Fluorescence
  • 5.1. Jablonski diagram
  • 5.2. Emission spectra
  • 5.3. Rate equations
  • 5.4. Quantum yield
  • 5.5. Fluorescence lifetime
  • 5.6. Quenching
  • 5.7. Problems
  • 6. Black body radiation
  • 6.1. Planck's radiation formula
  • 6.2. Wien's displacement law
  • 6.3. Stefan-Boltzmann law
  • 6.4. Asymptotic behaviors of Planck's formula
  • 6.5. Einstein's derivation of Planck's formula
  • 6.6. Problems
  • 7. LASER : light amplification by stimulated emission of radiation
  • 7.1. Population inversion, optical resonator, and narrow band radiation
  • 7.2. Gain
  • 7.3. Spectral line broadening
  • 7.4. Threshold for laser oscillation
  • 7.5. Laser kinetics
  • 7.6. Gain saturation
  • 7.7. Problems
  • 8. Classification of optical detectors
  • 8.1. Waves and photons
  • 8.2. Photon detectors
  • 8.3. Thermal detectors
  • 8.4. Problems
  • 9. Statistics of optical detection
  • 9.1. Probabilities
  • 9.2. Continuous random variables
  • 9.3. Moments of a distribution
  • 9.4. Common probability distributions
  • 9.5. Problems
  • 10. Detection noise
  • 10.1. Mechanisms of noise generation
  • 10.2. Spatio-temporal noise description
  • 10.3. Noise contributions
  • 10.4. Problems
  • 11. Figures of merit of optical detectors
  • 11.1. Quantum efficiency
  • 11.2. Responsivity
  • 11.3. Signal to noise ratio
  • 11.4. Saturation
  • 11.5. Dynamic range
  • 11.6. Noise-equivalent power
  • 11.7. Detectivity
  • 11.8. Gain
  • 11.9. Dark current
  • 11.10. Spatial and temporal sampling : aliasing
  • 11.11. Problems
  • 12. Semiconductor materials
  • 12.1. Insulators and conductors
  • 12.2. Covalent bonds in semiconductor crystals
  • 12.3. Energy band structure
  • 12.4. Carrier distribution
  • 12.5. Doping
  • 12.6. Electron-hole pair generation by absorption of light
  • 12.7. P-N junction
  • 12.8. Problems
  • 13. Photon detectors
  • 13.1. The p-n junction photodiode
  • 13.2. Photoconductive detectors
  • 13.3. Photoemission detectors
  • 13.4. Problems
  • 14. Thermal detectors
  • 14.1. Principle of photothermal detection
  • 14.2. Noise in thermal detectors
  • 14.3. Bolometers
  • 14.4. Pyroelectric detectors
  • 14.5. Problems
  • 15. Statistics of optical fields
  • 15.1. Optical fields as random variables
  • 15.2. Spatiotemporal correlation function
  • 15.3. Ergodic hypothesis
  • 15.4. Stationarity and statistical homogeneity
  • 15.5. Wiener-Khintchine theorem
  • 15.6. Spatial correlations of monochromatic light
  • 15.7. Temporal correlations of plane waves
  • 15.8. Spatially-dependent coherence time and temporally-dependent coherence area
  • 15.9. Problems.