Cargando…

Principles of biophotonics. Volume 1, Linear systems and the Fourier transform in optics /

Principles of Biophotonics: Linear systems and the Fourier transform in optics aims to teach students, instructors and professionals the basis of optical techniques for biological investigation. It is a textbook for experimentalists who are active at the interface between biology, medicine and optic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Popescu, Gabriel, 1971- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 6.
IOP expanding physics.
IPEM-IOP series in physics and engineering in medicine and biology.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Superposition principle
  • 1.1. Green's function method
  • 1.2. Fourier transform method
  • 1.3. Problems
  • 2. Linear systems
  • 2.1. Linearity
  • 2.2. Shift invariance
  • 2.3. Causality
  • 2.4. Stability
  • 2.5. Problems
  • 3. Spatial and temporal frequencies
  • 3.1. Monochromatic plane waves
  • 3.2. e-i([omega]t-k[product operator]r) as an eigenfunction of a LSI system
  • 3.3. Problems
  • 4. 1D Fourier transform
  • 4.1. Definition and conditions of existence
  • 4.2. Significance of the spectral phase
  • 4.3. Properties of the 1D Fourier transform
  • 4.4. Common 1D Fourier transform pairs
  • 4.5. Problems
  • 5. 2D Fourier transform
  • 5.1. Definition
  • 5.2. Significance of the spectral phase
  • 5.3. Properties specific to 2D functions
  • 5.4. Extension of 1D properties
  • 5.5. Common 2D transform pairs
  • 5.6. Polar coordinates: the Hankel transform
  • 5.7. Common Hankel transform pairs
  • 5.8. Fourier slice theorem
  • 5.9. Problems
  • 6. 3D Fourier transform
  • 6.1. Definition
  • 6.2. Extension of 1D properties
  • 6.3. Significance of the spectral phase
  • 6.4. Cylindrical coordinates
  • 6.5. Spherical coordinates
  • 6.6. Common 3D Fourier transform pairs
  • 6.7. Fourier slice theorem
  • 6.8. Problems
  • 7. Complex signals
  • 7.1. Imaginary signals
  • 7.2. Real signals
  • 7.3. Odd and even signals
  • 7.4. Frequency single-sided signals: complex analytic signals
  • 7.5. Time (space) single-sided signals: causality and the Kramers-Kronig relationship
  • 7.6. Problems
  • 8. The uncertainty relation
  • 8.1. Spatial and temporal spread of optical fields
  • 8.2. Proof of the uncertainty relation
  • 8.3. Effects of chirp on the pulse duration
  • 8.4. Effects of aberrations on spatial resolution
  • 8.5. Problems
  • 9. Linear systems with random inputs
  • 9.1. Random signals
  • 9.2. Stationarity and statistical homogeneity
  • 9.3. Power spectrum and the Wiener-Khinchin theorem
  • 9.4. Ergodicity
  • 9.5. Output spectra and correlations
  • 9.6. Stationary inputs
  • 9.7. Problems
  • 10. Fourier transform of vector-valued functions
  • 10.1. Definition and properties
  • 10.2. Maxwell's equations in the frequency domain
  • 10.3. Vector wave equation
  • 10.4. Scalar wave approximation
  • 10.5. Problems
  • 11. The Laplace transform
  • 11.1. Definition and properties
  • 11.2. Inverse Laplace transform
  • 11.3. Problems
  • Appendices. A. Complex variables
  • B. Vector algebra
  • C. Useful trigonometric formulas
  • D. Useful integrals.