Mathematical devices for optical sciences /
The Lorentz group which is the underlying scientific language for modern optics has been most notably used for understanding Einstein's special relativity. By using a simplified approach of two-by-two matrices and Wigner functions, this book provides a basic and novel approach to classical and...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2019]
|
Colección: | IOP (Series). Release 6.
IOP expanding physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Forms of quantum mechanics
- 1.1. The Schrödinger and Heisenberg pictures
- 1.2. Interaction picture
- 1.3. Density-matrix formulation of quantum mechanics
- 1.4. Further contents of Heisenberg's commutation relations
- 2. Lorentz group and its representations
- 2.1. Lie algebra of the Lorentz group
- 2.2. Two-by-two representation of the Lorentz group
- 2.3. Four-vectors in the two-by-two representation
- 2.4. Transformation properties in the two-by-two representation
- 2.5. Subgroups of the Lorentz group
- 2.6. Decompositions of the Sp(2) matrices
- 2.7. Bilinear conformal representation of the Lorentz group
- 3. Internal space-time symmetries
- 3.1. Wigner's little groups
- 3.2. Little groups in the light-cone coordinate system
- 3.3. Two-by-two representation of the little groups
- 3.4. One expression with three branches
- 3.5. Classical damped oscillators
- 4. Photons and neutrinos in the relativistic world of Maxwell and Wigner
- 4.1. The Lorentz group and Wigner's little groups
- 4.2. Massive and massless particles
- 4.3. Polarization of massless neutrinos
- 4.4. Scalars, vectors, tensors, and the polarization of photons
- 5. Wigner functions
- 5.1. Basic properties of the Wigner phase-space distribution function
- 5.2. Time dependence of the Wigner function
- 5.3. Wave packet spread
- 5.4. Harmonic oscillators
- 5.5. Minimum uncertainty in phase space
- 5.6. Density matrix
- 5.7. Measurable quantities
- 6. Coherent states of light
- 6.1. Phase-number uncertainty relation
- 6.2. Baker-Campbell-Hausdorff relation
- 6.3. Coherent states
- 6.4. Symmetry of coherent states
- 6.5. Coherent states in phase space
- 6.6. Single-mode squeezed states
- 7. Squeezed states and their symmetries
- 7.1. Two-mode states
- 7.2. Unitary transformations
- 7.3. Symmetries of two-mode states
- 7.4. Dirac matrices and O(3,3) symmetry
- 7.5. Symmetries in phase space
- 7.6. Two coupled oscillators
- 8. Entanglement and entropy
- 8.1. Density matrix and entropy
- 8.2. Two-by-two density matrices
- 8.3. Density matrix for two-oscillator states
- 8.4. Entropy for the two-mode state
- 8.5. Entangled excited states
- 8.6. Wigner functions and uncertainty relations
- 9. Ray optics and optical activities
- 9.1. Ray optics using the group of ABCD matrices
- 9.2. Physical examples using ABCD matrices
- 9.3. Optical activities
- 10. Polarization optics
- 10.1. Jones vector, phase shifters, and attenuators
- 10.2. New filters and possible applications
- 10.3. Non-orthogonal coordinate systems
- 11. Stokes parameters and Poincaré sphere
- 11.1. Polarization optics and decoherence
- 11.2. Coherency matrix and Stokes parameters
- 11.3. Poincaré sphere
- 11.4. The entropy problem
- 11.5. Further symmetries from the Poincaré sphere
- Appendix A. Covariant harmonic oscillators and the quark-parton puzzle
- A.1. The covariant harmonic oscillator
- A.2. Quark-parton puzzle.