Cargando…

Modern interferometry for length metrology : exploring limits and novel techniques /

Modern Interferometry for Length Metrology: Exploring limits and novel techniques gives an overview of refined traditional methods and novel techniques in the fields of length and distance metrology. The representation of a length according to the definition of the meter in the International System...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Schödel, René (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Practical realisation of the length by interferometry-general principles and limitations
  • 1.1. A short history of the metre and the present definition
  • 1.2. Realisation of the length by direct measurement of the light travelling time (time-of-flight measurement)
  • 1.3. The basic concept of length measurement by interferometry
  • 1.4. Optical frequency standards
  • 1.5. Types of length measuring interferometers
  • 1.6. General requirements and limitations in length measurements by interferometry
  • 2. Large field imaging interferometry for the measurement of the length of bar shaped material measures
  • 2.1. Introduction
  • 2.2. Topography-based measurement of the interference phase and extraction of the fractional order of interference
  • 2.3. Determination of the integer order of interference
  • 2.4. Measurement of the air refractive index
  • 2.5. Interferometer adjustment and limitations due to optical components and the light source
  • 2.6. Effect of surface roughness and phase change on reflection
  • 2.7. Wringing contact between a body and a platen
  • 2.8. Double ended interferometry
  • 2.9. PTB's ultra precision interferometer-design for special tasks
  • 2.10. The importance of the temperature measurement
  • 2.11. Primary gauge block calibrations performed today
  • 3. Fizeau interferometry for the sub-nm accurate realisation of sphere radii
  • 3.1. A brief history
  • 3.2. The measurement principle
  • 3.3. Optical interference
  • 3.4. Experimental implementation at PTB
  • 3.5. Outlook
  • 4. Laser interferometry for high resolution metrology in space
  • 4.1. Introduction
  • 4.2. Interferometric distance and tilt metrology
  • 4.3. Space-based gravitational wave detection
  • 4.4. Mapping Earth's gravitational field using satellite-to-satellite tracking
  • 4.5. Summary and outlook
  • 5. Interferometry in air with refractive index compensation
  • 5.1. The index of refraction
  • 5.2. Determining the intrinsic parameters
  • 5.3. Dispersive intrinsic refractivity compensation
  • 5.4. Air wavelength stabilisation
  • 5.5. Conclusions
  • 6. Frequency comb based spectral interferometry and homodyne many-wavelength interferometry for distance measurements
  • 6.1. Introduction to frequency comb lasers and their applications to dimensional metrology
  • 6.2. Distance measurement based on cross-correlation
  • 6.3. Evolution of cross-correlations at longer pulse propagation distances
  • 6.4. Spectral interferometry
  • 6.5. Mode-resolved homodyne interferometry
  • 6.6. Recent developments and outlook
  • 7. Distance measurements using mode-locked pulse lasers
  • 7.1. Introduction
  • 7.2. Comb-referenced multi-wavelength interferometer
  • 7.3. Comb-based dispersive interferometry
  • 7.4. Time-of-flight measurement by pulse-to-pulse cross-correlation
  • 7.5. Time-of-flight measurement by dual-comb interferometry
  • 7.6. Summary and outlook
  • 8. Absolute distance measurement using frequency scanning interferometry
  • 8.1. Introduction
  • 8.2. Physical description of FSI interferometers
  • 8.3. FSI analysis techniques
  • 8.4. FSI hardware technology
  • 9. Picometre level displacement interferometry
  • 9.1. Influences of the laser light source
  • 9.2. Correction of the refractive index
  • 9.3. Length-proportional error resulting for beam diffraction
  • 9.4. Conclusion.