Cargando…

Common envelope evolution /

Common envelope evolution is the most important phase in the lives of many significant classes of binary stars. During a common envelope phase, the stars temporarily share the same outer layers, with the cores of both stars orbiting inside the same common envelope. This common envelope is sometimes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ivanova, Natalia (astrophysicist) (Autor), Justham, Stephen (astrophysicist) (Autor), Ricker, Paul M. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:IOP (Series). Release 21.
AAS-IOP astronomy. 2021 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1. Why do we think common-envelope evolution happens?
  • 1.2. Why is common-envelope evolution broadly important?
  • 1.3. Why is modeling common-envelope evolution difficult?
  • 2. Main phases
  • 2.1. Characteristic timescales
  • 2.2. Phase I : the loss of orbital stability and the onset of the common envelope
  • 2.3. Phase II : the plunge-in
  • 2.4. Phase III : the slow spiral-in
  • 2.5. Phase IV : termination of the slow spiral-in phase
  • 2.6. Phase V : post-CE evolution
  • 3. The energy budget
  • 3.1. The energy formalism
  • 3.2. The energy of the envelope
  • 3.3. Extra energy sources
  • 3.4. Ways in which the energy reservoirs may be used
  • 3.5. Energy losses : radiation
  • 3.6. The complete energy budget
  • 3.7. A brief guide to the energy components
  • 4. The codes that do the job
  • 4.1. Physics of common-envelope evolution
  • 4.2. Numerical methods
  • 4.3. What can we trust?
  • 5. The onset of the common envelope
  • 5.1. Tides and pre-CEE
  • 5.2. Darwin instability
  • 5.3. Onset induced by a tertiary companion
  • 5.4. Orbital evolution due to mass loss
  • 5.5. Increased mass loss before the RLOF
  • 5.6. Roche-lobe overflow and L1 mass transfer
  • 5.7. Mass loss via outer Lagrangian points
  • 5.8. The Onset of double-core common-envelope
  • 5.9. The effects of pre-plunge-in evolution on ce evolution
  • 6. The plunge-in
  • 6.1. The start of the plunge-in and the initial conditions
  • 6.2. The plunge itself : overview of three-dimensional numerical results
  • 6.3. The end of the plunge-in phase
  • 6.4. Plunge-in and 1D considerations
  • 7. The slow spiral-in
  • 7.1. How should we identify the slow spiral-in in simulations?
  • 7.2. Which processes are important?
  • 7.3. Transition from the plunge to the slow spiral-in
  • 7.4. What have we learned from one-dimensional simulations?
  • 8. Mechanisms of mass ejection
  • 8.1. Initial ejection
  • 8.2. Dynamical plunge-in ejection
  • 8.3. Recombination outflows
  • 8.4. Shell-triggered ejections and delayed dynamical ejection
  • 9. The outcomes of CE simulations
  • 9.1. The mass of the initial and remnant core
  • 9.2. Properties of post-common-envelope binaries
  • 9.3. Characteristics of outflows
  • 9.4. Can angular momentum conservation be used to predict CEE outcomes?
  • 10. Linking with observations
  • 10.1. Overview
  • 10.2. Post-common-envelope binary properties
  • 10.3. Post-common-envelope planetary nebulae
  • 10.4. Presumed post-merger stars and their nebulae
  • 10.5. Transients from CEE and stellar mergers
  • 10.6. Stars undergoing a common-envelope phase.