Cargando…

Theoretical fluid mechanics /

Theoretical Fluid Mechanics' has been written to aid physics students who wish to pursue a course of self-study in fluid mechanics. It is a comprehensive, completely self-contained text with equations of fluid mechanics derived from first principles, and any required advanced mathematics is eit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fitzpatrick, Richard, 1963- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017]
Colección:IOP (Series). Release 4.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Mathematical models of fluid motion
  • 1.1. Introduction
  • 1.2. What is a fluid?
  • 1.3. Volume and surface forces
  • 1.4. General properties of the stress tensor
  • 1.5. Stress tensor in a static fluid
  • 1.6. Stress tensor in a moving fluid
  • 1.7. Viscosity
  • 1.8. Conservation laws
  • 1.9. Mass conservation
  • 1.10. Convective time derivative
  • 1.11. Momentum conservation
  • 1.12. Navier-Stokes equation
  • 1.13. Energy conservation
  • 1.14. Equations of incompressible fluidflow
  • 1.15. Equations of compressible fluid flow
  • 1.16. Dimensionless numbers in incompressible flow
  • 1.17. Dimensionless numbers in compressible flow
  • 1.18. Fluid equations in Cartesian coordinates
  • 1.19. Fluid equations in cylindrical coorinates
  • 1.20. Fluid equations in spherical coordinates
  • 1.21. Exercises
  • 2. Hydrostatics
  • 2.1. Introduction
  • 2.2. Hydrostatic pressure
  • 2.3. Buoyancy
  • 2.4. Equilibria of floating bodies
  • 2.5. Vertical stability of floating bodies
  • 2.6. Angular stability of floating bodies
  • 2.7. Determination of metacentric height
  • 2.8. Energy of a floating body
  • 2.9. Curve of buoyancy
  • 2.10. Rotational hydrostatics
  • 2.11. Equilibrium of a rotating liquid body
  • 2.12. Maclaurin spheroids
  • 2.13. Jacobi ellipsoids
  • 2.14. Roche ellipsoids
  • 2.15. Exercises
  • 3. Surface tension
  • 3.1. Introduction
  • 3.2. Young-Laplace equation
  • 3.3. Spherical interfaces
  • 3.4. Capillary length
  • 3.5. Angle of contact
  • 3.6. Jurin's law
  • 3.7. Capillary curves
  • 3.8. Axisymmetric soap-bubbles
  • 3.9. Exercises
  • 4. Incompressible inviscid flow
  • 4.1. Introduction
  • 4.2. Streamlines, stream tubes, and stream filaments
  • 4.3. Bernoulli's theorem
  • 4.4. Euler's momentum theorem
  • 4.5. d'Alembert's paradox
  • 4.6. Flow through an orifice
  • 4.7. Sub-critical and super-critical flow
  • 4.8. Flow over a shallow bump
  • 4.9. Stationary hydraulic jumps
  • 4.10. Tidal bores
  • 4.11. Flow over a broad-crested weir
  • 4.12. Vortex lines, vortex tubes, and vortex filaments
  • 4.13. Circulation and vorticity
  • 4.14. Kelvin's circulation theorem
  • 4.15. Irrotational flow
  • 4.16. Exercises
  • 5. Two-dimensional incompressible inviscid flow
  • 5.1. Introduction
  • 5.2. Two-dimensional flow
  • 5.3. Velocity potentials and stream functions
  • 5.4. Two-dimensional uniform flow
  • 5.5. Two-dimensional sources and sinks
  • 5.6. Two-dimensional vortex filaments
  • 5.7. Two-dimensional irrotational flow in cylindrical coordinates
  • 5.8. Flow past a cylindrical obstacle
  • 5.9. Motion of a submerged cylinder
  • 5.10. Inviscid flow past a semi-infinite wedge
  • 5.11. Inviscid flow over a semi-infinite wedge
  • 5.12. Two-dimensional jets
  • 5.13. Exercises
  • 6. Two-dimensional potential flow
  • 6.1. Introduction
  • 6.2. Complex functions
  • 6.3. Cauchy-Riemann relations
  • 6.4. Complex velocity potential
  • 6.5. Complex velocity
  • 6.6. Method of images
  • 6.7. Conformal maps
  • 6.8. Schwarz-Christoffel theorem
  • 6.9. Free streamline theory
  • 6.10. Complex line integrals
  • 6.11. Blasius' theorem
  • 6.12. Exercises
  • 7. Axisymmetric incompressible inviscid flow
  • 7.1. Introduction
  • 7.2. Axisymmetric flow
  • 7.3. Stokes stream function
  • 7.4. Axisymmetric velocity fields
  • 7.5. Axisymmetric irrotational flow in spherical coordinates
  • 7.6. Uniform flow
  • 7.7. Point sources
  • 7.8. Dipole point sources
  • 7.9. Flow past a spherical obstacle
  • 7.10. Motion of a submerged sphere
  • 7.11. Conformal maps
  • 7.12. Flow around a submerged oblate spheroid
  • 7.13. Flow around a submerged prolate spheroid
  • 7.14. Exercises
  • 8. Incompressible boundary layers
  • 8.1. Introduction
  • 8.2. No-slip condition
  • 8.3. Boundary layer equations
  • 8.4. Self-similar boundary layers
  • 8.5. Boundary layer on a flat plate
  • 8.6. Wake downstream of a flat plate
  • 8.7. Von Kármán momentum integral
  • 8.8. Boundary layer separation
  • 8.9. Criterion for boundary layer separation
  • 8.10. Approximate solutions of boundary layer equations
  • 8.11. Exercises
  • 9. Incompressible aerodynamics
  • 9.1. Introduction
  • 9.2. Kutta-Zhukovskii theorem
  • 9.3. Cylindrical airfoils
  • 9.4. Zhukovskii's hypothesis
  • 9.5. Vortex sheets
  • 9.6. Induced flow
  • 9.7. Three-dimensional airfoils
  • 9.8. Aerodynamic forces
  • 9.9. Ellipsoidal airfoils
  • 9.10. Simple flight problems
  • 9.11. Exercises
  • 10. Incompressible viscous flow
  • 10.1. Introduction
  • 10.2. Flow between parallel plates
  • 10.3. Flow down an inclined plane
  • 10.4. Poiseuille flow
  • 10.5. Taylor-Couette flow
  • 10.6. Flow in slowly-varying channels
  • 10.7. Lubrication theory
  • 10.8. Stokes flow
  • 10.9. Axisymmetric Stokes flow
  • 10.10. Axisymmetric Stokes flow around a solid sphere
  • 10.11. Axisymmetric Stokes flow in and around a fluid sphere
  • 10.12. Exercises
  • 11. Waves in incompressible fluids
  • 11.1. Introduction
  • 11.2. Gravity waves
  • 11.3. Gravity waves in deep water
  • 11.4. Gravity waves in shallow water
  • 11.5. Energy of gravity waves
  • 11.6. Wave drag on ships
  • 11.7. Ship wakes
  • 11.8. Gravity waves in a flowing fluid
  • 11.9. Gravity waves at an interface
  • 11.10. Steady flow over a corrugated bottom
  • 11.11. Surface tension
  • 11.12. Capillary waves
  • 11.13. Capillary waves at an interface
  • 11.14. Wind-driven waves in deep water
  • 11.15. Exercises
  • 12. Terrestrial ocean tides
  • 12.1. Introduction
  • 12.2. Tide-generating potential
  • 12.3. Decomposition of tide-generating potential
  • 12.4. Expansion of tide-generating potential
  • 12.5. Surface harmonics and solid harmonics
  • 12.6. Planetary rotation
  • 12.7. Total gravitational potential
  • 12.8. Planetary response
  • 12.9. Laplace tidal equations
  • 12.10. Harmonics of the forcing term in the Laplace tidal equations
  • 12.11. Response to the equilibrium harmonic
  • 12.12. Global ocean tides
  • 12.13. Non-global ocean tides
  • 12.14. Useful lemma
  • 12.15. Transformation of Laplace tidal equations
  • 12.16. Another useful lemma
  • 12.17. Basis eigenfunctions
  • 12.18. Auxiliary eigenfunctions
  • 12.19. Gyroscopic coefficients
  • 12.20. Proudman equations
  • 12.21. Hemispherical ocean tides
  • 12.22. Exercises
  • 13. Equilibria of compressible fluids
  • 13.1. Introduction
  • 13.2. Isothermal atmosphere
  • 13.3. Adiabatic atmosphere
  • 13.4. Atmospheric stability
  • 13.5. Eddington solar model
  • 13.6. Exercises
  • 14. One-dimensional compressible inviscid flow
  • 14.1. Introduction
  • 14.2. Thermodynamic considerations
  • 14.3. Isentropic flow
  • 14.4. Sound waves
  • 14.5. Bernoulli's theorem
  • 14.6. Mach number
  • 14.7. Sonic flow through a nozzle
  • 14.8. Normal shocks
  • 14.9. Piston-generated shock wave
  • 14.10. Piston-generated expansion wave
  • 14.11. Exercises
  • 15. Two-dimensional compressible inviscid flow
  • 15.1. Introduction
  • 15.2. Oblique shocks
  • 15.3. Supersonic flow in a corner or over a wedge
  • 15.4. Weak oblique shocks
  • 15.5. Supersonic compression by turning
  • 15.6. Supersonic expansion by turning
  • 15.7. Detached shocks
  • 15.8. Shock-expansion theory
  • 15.9. Thin-airfoil theory
  • 15.10. Crocco's theorem
  • 15.11. Homenergic homentropic flow
  • 15.12. Small-perturbation theory
  • 15.13. Subsonic flow past a wave-shaped wall
  • 15.14. Supersonic flow past a wave-shaped wall
  • 15.15. Linearized subsonic flow
  • 15.16. Linearized supersonic flow
  • 15.17. Flat lifting wings
  • 15.18. Exercises
  • Appendices. A Vectors and vector fields
  • A.1. Introduction
  • A.2. Scalars and vectors
  • A.3. Vector algebra
  • A.4. Cartesian components of a vector
  • A.5. Coordinate transformations
  • A.6. Scalar product
  • A.7. Vector area
  • A.8. Vector product
  • A.9. Rotation
  • A.10. Scalar triple product
  • A.11. Vector triple product
  • A.12. Vector calculus
  • A.13. Line integrals
  • A.14. Vector line integrals
  • A.15. Surface integrals
  • A.16. Vector surface integrals
  • A.17. Volume integrals
  • A.18. Gradient
  • A.19. Grad operator
  • A.20. Divergence
  • A.21. Laplacian operator
  • A.22. Curl
  • A.23. Useful vector identities
  • A.24. Exercises
  • B. Cartesian tensors
  • B.1. Introduction
  • B.2. Tensors and tensor notation
  • B.3. Tensor transformation
  • B.4. Tensor fields
  • B.5. Isotropic tensors
  • B.6. Exercises
  • C. Non-Cartesian coordinates
  • C.1. Introduction
  • C.2. Orthogonal curvilinear coordinates
  • C.3. Cylindrical coordinates
  • C.4. Spherical coordinates
  • C.5. Exercises
  • D. Ellipsoidal potential theory
  • D.1. Introduction
  • D.2. Analysis
  • D.3. Exercises
  • E. Calculus of variations
  • E.1. Introduction
  • E.2. Euler-Lagrange equation
  • E.3. Conditional variation
  • E.4. Multi-function variation
  • E.5. Exercises
  • F. Solutions to exercises in chapter 1
  • G. Solutions to exercises in chapter 2
  • H. Solutions to exercises in chapter 3
  • I. Solutions to exercises in chapter 4
  • J. Solutions to exercises in chapter 5
  • K. Solutions to exercises in chapter 6
  • L. Solutions to exercises in chapter 7
  • M. Solutions to exercises in chapter 8
  • N. Solutions to exercises in chapter 9
  • O. Solutions to exercises in chapter 10
  • P. Solutions to exercises in chapter 11
  • Q. Solutions to exercises in chapter 12
  • R. Solutions to exercises in chapter 13
  • S. Solutions to exercises in chapter 14
  • T. Solutions to exercises in chapter 15
  • U. Solutions to exercises in appendix A
  • V. Solutions to exercises in appendix B
  • W. Solutions to exercises in appendix C
  • X. Solutions to exercises in appendix D
  • Y. Solutions to exercises in appendix E.