Cargando…

Theoretical fluid mechanics /

Theoretical Fluid Mechanics' has been written to aid physics students who wish to pursue a course of self-study in fluid mechanics. It is a comprehensive, completely self-contained text with equations of fluid mechanics derived from first principles, and any required advanced mathematics is eit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fitzpatrick, Richard, 1963- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017]
Colección:IOP (Series). Release 4.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750315548
003 IOP
005 20180112225514.0
006 m eo d
007 cr cn |||m|||a
008 180111s2017 enka ob 000 0 eng d
020 |a 9780750315548  |q ebook 
020 |a 9780750315531  |q mobi 
020 |z 9780750315524  |q print 
024 7 |a 10.1088/978-0-7503-1554-8  |2 doi 
035 |a (CaBNVSL)thg00975457 
035 |a (OCoLC)1019445701 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QA901  |b .F588 2017eb 
072 7 |a PHDF  |2 bicssc 
072 7 |a SCI085000  |2 bisacsh 
082 0 4 |a 532.001  |2 23 
100 1 |a Fitzpatrick, Richard,  |d 1963-  |e author. 
245 1 0 |a Theoretical fluid mechanics /  |c Richard Fitzpatrick. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2017] 
300 |a 1 online resource (various pagings) :  |b illustrations (chiefly color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 4] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20171201"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Mathematical models of fluid motion -- 1.1. Introduction -- 1.2. What is a fluid? -- 1.3. Volume and surface forces -- 1.4. General properties of the stress tensor -- 1.5. Stress tensor in a static fluid -- 1.6. Stress tensor in a moving fluid -- 1.7. Viscosity -- 1.8. Conservation laws -- 1.9. Mass conservation -- 1.10. Convective time derivative -- 1.11. Momentum conservation -- 1.12. Navier-Stokes equation -- 1.13. Energy conservation -- 1.14. Equations of incompressible fluidflow -- 1.15. Equations of compressible fluid flow -- 1.16. Dimensionless numbers in incompressible flow -- 1.17. Dimensionless numbers in compressible flow -- 1.18. Fluid equations in Cartesian coordinates -- 1.19. Fluid equations in cylindrical coorinates -- 1.20. Fluid equations in spherical coordinates -- 1.21. Exercises 
505 8 |a 2. Hydrostatics -- 2.1. Introduction -- 2.2. Hydrostatic pressure -- 2.3. Buoyancy -- 2.4. Equilibria of floating bodies -- 2.5. Vertical stability of floating bodies -- 2.6. Angular stability of floating bodies -- 2.7. Determination of metacentric height -- 2.8. Energy of a floating body -- 2.9. Curve of buoyancy -- 2.10. Rotational hydrostatics -- 2.11. Equilibrium of a rotating liquid body -- 2.12. Maclaurin spheroids -- 2.13. Jacobi ellipsoids -- 2.14. Roche ellipsoids -- 2.15. Exercises 
505 8 |a 3. Surface tension -- 3.1. Introduction -- 3.2. Young-Laplace equation -- 3.3. Spherical interfaces -- 3.4. Capillary length -- 3.5. Angle of contact -- 3.6. Jurin's law -- 3.7. Capillary curves -- 3.8. Axisymmetric soap-bubbles -- 3.9. Exercises 
505 8 |a 4. Incompressible inviscid flow -- 4.1. Introduction -- 4.2. Streamlines, stream tubes, and stream filaments -- 4.3. Bernoulli's theorem -- 4.4. Euler's momentum theorem -- 4.5. d'Alembert's paradox -- 4.6. Flow through an orifice -- 4.7. Sub-critical and super-critical flow -- 4.8. Flow over a shallow bump -- 4.9. Stationary hydraulic jumps -- 4.10. Tidal bores -- 4.11. Flow over a broad-crested weir -- 4.12. Vortex lines, vortex tubes, and vortex filaments -- 4.13. Circulation and vorticity -- 4.14. Kelvin's circulation theorem -- 4.15. Irrotational flow -- 4.16. Exercises 
505 8 |a 5. Two-dimensional incompressible inviscid flow -- 5.1. Introduction -- 5.2. Two-dimensional flow -- 5.3. Velocity potentials and stream functions -- 5.4. Two-dimensional uniform flow -- 5.5. Two-dimensional sources and sinks -- 5.6. Two-dimensional vortex filaments -- 5.7. Two-dimensional irrotational flow in cylindrical coordinates -- 5.8. Flow past a cylindrical obstacle -- 5.9. Motion of a submerged cylinder -- 5.10. Inviscid flow past a semi-infinite wedge -- 5.11. Inviscid flow over a semi-infinite wedge -- 5.12. Two-dimensional jets -- 5.13. Exercises 
505 8 |a 6. Two-dimensional potential flow -- 6.1. Introduction -- 6.2. Complex functions -- 6.3. Cauchy-Riemann relations -- 6.4. Complex velocity potential -- 6.5. Complex velocity -- 6.6. Method of images -- 6.7. Conformal maps -- 6.8. Schwarz-Christoffel theorem -- 6.9. Free streamline theory -- 6.10. Complex line integrals -- 6.11. Blasius' theorem -- 6.12. Exercises 
505 8 |a 7. Axisymmetric incompressible inviscid flow -- 7.1. Introduction -- 7.2. Axisymmetric flow -- 7.3. Stokes stream function -- 7.4. Axisymmetric velocity fields -- 7.5. Axisymmetric irrotational flow in spherical coordinates -- 7.6. Uniform flow -- 7.7. Point sources -- 7.8. Dipole point sources -- 7.9. Flow past a spherical obstacle -- 7.10. Motion of a submerged sphere -- 7.11. Conformal maps -- 7.12. Flow around a submerged oblate spheroid -- 7.13. Flow around a submerged prolate spheroid -- 7.14. Exercises 
505 8 |a 8. Incompressible boundary layers -- 8.1. Introduction -- 8.2. No-slip condition -- 8.3. Boundary layer equations -- 8.4. Self-similar boundary layers -- 8.5. Boundary layer on a flat plate -- 8.6. Wake downstream of a flat plate -- 8.7. Von Kármán momentum integral -- 8.8. Boundary layer separation -- 8.9. Criterion for boundary layer separation -- 8.10. Approximate solutions of boundary layer equations -- 8.11. Exercises 
505 8 |a 9. Incompressible aerodynamics -- 9.1. Introduction -- 9.2. Kutta-Zhukovskii theorem -- 9.3. Cylindrical airfoils -- 9.4. Zhukovskii's hypothesis -- 9.5. Vortex sheets -- 9.6. Induced flow -- 9.7. Three-dimensional airfoils -- 9.8. Aerodynamic forces -- 9.9. Ellipsoidal airfoils -- 9.10. Simple flight problems -- 9.11. Exercises 
505 8 |a 10. Incompressible viscous flow -- 10.1. Introduction -- 10.2. Flow between parallel plates -- 10.3. Flow down an inclined plane -- 10.4. Poiseuille flow -- 10.5. Taylor-Couette flow -- 10.6. Flow in slowly-varying channels -- 10.7. Lubrication theory -- 10.8. Stokes flow -- 10.9. Axisymmetric Stokes flow -- 10.10. Axisymmetric Stokes flow around a solid sphere -- 10.11. Axisymmetric Stokes flow in and around a fluid sphere -- 10.12. Exercises 
505 8 |a 11. Waves in incompressible fluids -- 11.1. Introduction -- 11.2. Gravity waves -- 11.3. Gravity waves in deep water -- 11.4. Gravity waves in shallow water -- 11.5. Energy of gravity waves -- 11.6. Wave drag on ships -- 11.7. Ship wakes -- 11.8. Gravity waves in a flowing fluid -- 11.9. Gravity waves at an interface -- 11.10. Steady flow over a corrugated bottom -- 11.11. Surface tension -- 11.12. Capillary waves -- 11.13. Capillary waves at an interface -- 11.14. Wind-driven waves in deep water -- 11.15. Exercises 
505 8 |a 12. Terrestrial ocean tides -- 12.1. Introduction -- 12.2. Tide-generating potential -- 12.3. Decomposition of tide-generating potential -- 12.4. Expansion of tide-generating potential -- 12.5. Surface harmonics and solid harmonics -- 12.6. Planetary rotation -- 12.7. Total gravitational potential -- 12.8. Planetary response -- 12.9. Laplace tidal equations -- 12.10. Harmonics of the forcing term in the Laplace tidal equations -- 12.11. Response to the equilibrium harmonic -- 12.12. Global ocean tides -- 12.13. Non-global ocean tides -- 12.14. Useful lemma -- 12.15. Transformation of Laplace tidal equations -- 12.16. Another useful lemma -- 12.17. Basis eigenfunctions -- 12.18. Auxiliary eigenfunctions -- 12.19. Gyroscopic coefficients -- 12.20. Proudman equations -- 12.21. Hemispherical ocean tides -- 12.22. Exercises 
505 8 |a 13. Equilibria of compressible fluids -- 13.1. Introduction -- 13.2. Isothermal atmosphere -- 13.3. Adiabatic atmosphere -- 13.4. Atmospheric stability -- 13.5. Eddington solar model -- 13.6. Exercises 
505 8 |a 14. One-dimensional compressible inviscid flow -- 14.1. Introduction -- 14.2. Thermodynamic considerations -- 14.3. Isentropic flow -- 14.4. Sound waves -- 14.5. Bernoulli's theorem -- 14.6. Mach number -- 14.7. Sonic flow through a nozzle -- 14.8. Normal shocks -- 14.9. Piston-generated shock wave -- 14.10. Piston-generated expansion wave -- 14.11. Exercises 
505 8 |a 15. Two-dimensional compressible inviscid flow -- 15.1. Introduction -- 15.2. Oblique shocks -- 15.3. Supersonic flow in a corner or over a wedge -- 15.4. Weak oblique shocks -- 15.5. Supersonic compression by turning -- 15.6. Supersonic expansion by turning -- 15.7. Detached shocks -- 15.8. Shock-expansion theory -- 15.9. Thin-airfoil theory -- 15.10. Crocco's theorem -- 15.11. Homenergic homentropic flow -- 15.12. Small-perturbation theory -- 15.13. Subsonic flow past a wave-shaped wall -- 15.14. Supersonic flow past a wave-shaped wall -- 15.15. Linearized subsonic flow -- 15.16. Linearized supersonic flow -- 15.17. Flat lifting wings -- 15.18. Exercises 
505 8 |a Appendices. A Vectors and vector fields -- A.1. Introduction -- A.2. Scalars and vectors -- A.3. Vector algebra -- A.4. Cartesian components of a vector -- A.5. Coordinate transformations -- A.6. Scalar product -- A.7. Vector area -- A.8. Vector product -- A.9. Rotation -- A.10. Scalar triple product -- A.11. Vector triple product -- A.12. Vector calculus -- A.13. Line integrals -- A.14. Vector line integrals -- A.15. Surface integrals -- A.16. Vector surface integrals -- A.17. Volume integrals -- A.18. Gradient -- A.19. Grad operator -- A.20. Divergence -- A.21. Laplacian operator -- A.22. Curl -- A.23. Useful vector identities -- A.24. Exercises 
505 8 |a B. Cartesian tensors -- B.1. Introduction -- B.2. Tensors and tensor notation -- B.3. Tensor transformation -- B.4. Tensor fields -- B.5. Isotropic tensors -- B.6. Exercises 
505 8 |a C. Non-Cartesian coordinates -- C.1. Introduction -- C.2. Orthogonal curvilinear coordinates -- C.3. Cylindrical coordinates -- C.4. Spherical coordinates -- C.5. Exercises 
505 8 |a D. Ellipsoidal potential theory -- D.1. Introduction -- D.2. Analysis -- D.3. Exercises 
505 8 |a E. Calculus of variations -- E.1. Introduction -- E.2. Euler-Lagrange equation -- E.3. Conditional variation -- E.4. Multi-function variation -- E.5. Exercises 
505 8 |a F. Solutions to exercises in chapter 1 -- G. Solutions to exercises in chapter 2 -- H. Solutions to exercises in chapter 3 -- I. Solutions to exercises in chapter 4 -- J. Solutions to exercises in chapter 5 -- K. Solutions to exercises in chapter 6 -- L. Solutions to exercises in chapter 7 -- M. Solutions to exercises in chapter 8 -- N. Solutions to exercises in chapter 9 -- O. Solutions to exercises in chapter 10 -- P. Solutions to exercises in chapter 11 -- Q. Solutions to exercises in chapter 12 -- R. Solutions to exercises in chapter 13 -- S. Solutions to exercises in chapter 14 -- T. Solutions to exercises in chapter 15 -- U. Solutions to exercises in appendix A -- V. Solutions to exercises in appendix B -- W. Solutions to exercises in appendix C -- X. Solutions to exercises in appendix D -- Y. Solutions to exercises in appendix E. 
520 3 |a Theoretical Fluid Mechanics' has been written to aid physics students who wish to pursue a course of self-study in fluid mechanics. It is a comprehensive, completely self-contained text with equations of fluid mechanics derived from first principles, and any required advanced mathematics is either fully explained in the text, or in an appendix. It is accompanied by about 180 exercises with completely worked out solutions. It also includes extensive sections on the application of fluid mechanics to topics of importance in astrophysics and geophysics. These topics include the equilibrium of rotating, self-gravitating, fluid masses; tidal bores; terrestrial ocean tides; and the Eddington solar model. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Richard Fitzpatrick is a professor of physics at the University of Texas at Austin, where he has been a faculty member since 1994. He is a member of the Royal Astronomical Society, a fellow of the American Physical Society, and the author of Maxwell's Equations and the Principles of Electromagnetism (2008), An Introduction to Celestial Mechanics (2012), Oscillations and Waves: An Introduction (2013), Plasma Physics: An Introduction (2014), and Quantum Mechanics (2015). He earned a master's degree in physics from the University of Cambridge and a DPhil in astronomy from the University of Sussex. 
588 0 |a Title from PDF title page (viewed on January 11, 2018). 
650 0 |a Fluid mechanics. 
650 7 |a Fluid mechanics.  |2 bicssc 
650 7 |a SCIENCE / Mechanics / Fluids.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750315524 
830 0 |a IOP (Series).  |p Release 4. 
830 0 |a IOP expanding physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-1554-8  |z Texto completo