Cargando…

Multiple scattering theory : electronic structure of solids /

In 1947, it was discovered that multiple scattering theory can be used to solve the Schrödinger equation for the stationary states of electrons in a solid. Written by experts in the field, Dr. J S Faulkner, G M Stocks, and Yang Wang, this book collates the results of numerous studies in the field o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Faulkner, J. S. (Autor), Stocks, G. M., 1943- (Autor), Wang, Yang (Ph. D. in physics) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. History of multiple scattering theory
  • 2. Scattering theory
  • 2.1. Potential scattering
  • 2.2. Position representation
  • 2.3. The classic scattering experiment
  • 2.4. Angular momentum expansion
  • 2.5. Non-spherical potentials with finite domains
  • 2.6. Spherical potentials
  • 2.7. Analytical properties of scattering matrices
  • 3. Multiple scattering equations
  • 3.1. Derivation of multiple scattering equations
  • 3.2. Approximations
  • 3.3. Proof of Korringa's hypothesis
  • 3.4. The Korringa-Kohn-Rostoker band theory
  • 3.5. Constant energy surfaces
  • 3.6. Space-filling potentials
  • 3.7. Pivoted multiple scattering
  • 3.8. Wave functions
  • 4. Green's functions
  • 4.1. The free-particle Green's functions and its adjoint
  • 4.2. The Green's function for one scatterer
  • 4.3. The Green's function for N scatterers
  • 4.4. The Green's function for an infinite periodic lattice
  • 4.5. The use of a complex energy
  • 4.6. Full potential calculations
  • 4.7. The Green's function for an impurity embedded in a periodic lattice
  • 5. MST for systems with no long range order
  • 5.1. The supercell method
  • 5.2. An order-N method for large systems
  • 5.3. Magnetism
  • 5.4. The coherent potential approximation for random alloys
  • 5.5. The spectral density function
  • 5.6. Resistivity
  • 5.7. The polymorphous CPA
  • 5.8. Historical studies of alloys
  • 6. Spectral theory in multiple scattering theory
  • 6.1. Krein's theorem
  • 6.2. Calculations with real potentials using Krein's theorem
  • 6.3. Lloyd's formula and Krein's theorem
  • 7. Toy models
  • 7.1. The Kronig-Penney model
  • 7.2. The transfer matrix approach
  • 7.3. The MST approach
  • 7.4. The Kronig-Penney model of a disordered alloy
  • 7.5. The average trace method
  • 7.6. The coherent potential approximation
  • 7.7. Lloyd's formula for the Kronig-Penney model
  • 7.8. The spherical square well
  • 8. Relativistic full potential MST calculations
  • 8.1. The Dirac equation
  • 8.2. Relativistic Green's function
  • 8.3. Some examples
  • 9. Applications of MST
  • 9.1. Incommensurate concentration waves
  • 9.2. Correlations and order in alloy concentrations
  • 9.3. The embedded cluster Monte-Carlo method
  • 9.4. High entropy alloys
  • 10. Conclusions : beautiful minds.