Cargando…

Multiple scattering theory : electronic structure of solids /

In 1947, it was discovered that multiple scattering theory can be used to solve the Schrödinger equation for the stationary states of electrons in a solid. Written by experts in the field, Dr. J S Faulkner, G M Stocks, and Yang Wang, this book collates the results of numerous studies in the field o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Faulkner, J. S. (Autor), Stocks, G. M., 1943- (Autor), Wang, Yang (Ph. D. in physics) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750314909
003 IOP
005 20190118225509.0
006 m eo d
007 cr cn |||m|||a
008 190116s2018 enka ob 000 0 eng d
020 |a 9780750314909  |q ebook 
020 |a 9780750314893  |q mobi 
020 |z 9780750314886  |q print 
024 7 |a 10.1088/2053-2563/aae7d8  |2 doi 
035 |a (CaBNVSL)thg00978445 
035 |a (OCoLC)1082881984 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC173.4.M85  |b F386 2018eb 
072 7 |a PHF  |2 bicssc 
072 7 |a SCI022000  |2 bisacsh 
082 0 4 |a 530.4/16  |2 23 
100 1 |a Faulkner, J. S.,  |e author. 
245 1 0 |a Multiple scattering theory :  |b electronic structure of solids /  |c J.S. Faulkner, G. Malcolm Stocks, Yang Wang. 
246 3 0 |a Electronic structure of solids. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2018] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 6] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20181201"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. History of multiple scattering theory -- 2. Scattering theory -- 2.1. Potential scattering -- 2.2. Position representation -- 2.3. The classic scattering experiment -- 2.4. Angular momentum expansion -- 2.5. Non-spherical potentials with finite domains -- 2.6. Spherical potentials -- 2.7. Analytical properties of scattering matrices 
505 8 |a 3. Multiple scattering equations -- 3.1. Derivation of multiple scattering equations -- 3.2. Approximations -- 3.3. Proof of Korringa's hypothesis -- 3.4. The Korringa-Kohn-Rostoker band theory -- 3.5. Constant energy surfaces -- 3.6. Space-filling potentials -- 3.7. Pivoted multiple scattering -- 3.8. Wave functions 
505 8 |a 4. Green's functions -- 4.1. The free-particle Green's functions and its adjoint -- 4.2. The Green's function for one scatterer -- 4.3. The Green's function for N scatterers -- 4.4. The Green's function for an infinite periodic lattice -- 4.5. The use of a complex energy -- 4.6. Full potential calculations -- 4.7. The Green's function for an impurity embedded in a periodic lattice 
505 8 |a 5. MST for systems with no long range order -- 5.1. The supercell method -- 5.2. An order-N method for large systems -- 5.3. Magnetism -- 5.4. The coherent potential approximation for random alloys -- 5.5. The spectral density function -- 5.6. Resistivity -- 5.7. The polymorphous CPA -- 5.8. Historical studies of alloys 
505 8 |a 6. Spectral theory in multiple scattering theory -- 6.1. Krein's theorem -- 6.2. Calculations with real potentials using Krein's theorem -- 6.3. Lloyd's formula and Krein's theorem 
505 8 |a 7. Toy models -- 7.1. The Kronig-Penney model -- 7.2. The transfer matrix approach -- 7.3. The MST approach -- 7.4. The Kronig-Penney model of a disordered alloy -- 7.5. The average trace method -- 7.6. The coherent potential approximation -- 7.7. Lloyd's formula for the Kronig-Penney model -- 7.8. The spherical square well 
505 8 |a 8. Relativistic full potential MST calculations -- 8.1. The Dirac equation -- 8.2. Relativistic Green's function -- 8.3. Some examples 
505 8 |a 9. Applications of MST -- 9.1. Incommensurate concentration waves -- 9.2. Correlations and order in alloy concentrations -- 9.3. The embedded cluster Monte-Carlo method -- 9.4. High entropy alloys -- 10. Conclusions : beautiful minds. 
520 3 |a In 1947, it was discovered that multiple scattering theory can be used to solve the Schrödinger equation for the stationary states of electrons in a solid. Written by experts in the field, Dr. J S Faulkner, G M Stocks, and Yang Wang, this book collates the results of numerous studies in the field of multiple scattering theory and provides a comprehensive, systematic approach to MSTs. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Professor John Samuel Faulkner obtained his PhD in physics from The Ohio State University, and is currently professor emeritus of Florida Atlantic University. Professor Faulkner has celebrated a career in physics for over five decades and has numerous publications in professional journals and articles. G.M. Stocks is a corporate fellow at Oak Ridge National Laboratory and gained his PhD in theoretical physics from the University of Sheffield. Dr. Stocks is a major developer of a number of first principles electronic structure methods and has published in numerous scientific publications. Dr. Yang Wang obtained his Physics PhD from Florida Atlantic University and currently a Senior Computational Scientist at Pittsburgh Supercomputing Centre. Dr. Wang notably developed a linear scaling quantum mechanical simulation code to study electronic and magnetic structures of metals and alloys." 
588 0 |a Title from PDF title page (viewed on January 16, 2019). 
650 0 |a Multiple scattering (Physics) 
650 0 |a Energy-band theory of solids. 
650 7 |a Materials / States of matter.  |2 bicssc 
650 7 |a SCIENCE / Physics / Electromagnetism.  |2 bisacsh 
700 1 |a Stocks, G. M.,  |d 1943-  |e author. 
700 1 |a Wang, Yang  |c (Ph. D. in physics),  |e author. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750314886 
830 0 |a IOP (Series).  |p Release 6. 
830 0 |a IOP expanding physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-1490-9  |z Texto completo