Cargando…

Flexible electronics. Volume 1, Mechanical background, materials and manufacturing /

Flexible electronics is a fast-emerging field with the potential for huge industrial importance. Comprising three volumes, this work offers a cohesive, coherent and comprehensive overview of the field. Themes covered include mechanical theory, materials science aspects, fabrication technologies, dev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Khanna, Vinod Kumar, 1952- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. The flexible electronics paradigm
  • 1.1. Introduction
  • 1.2. Traditional versus flexible electronics
  • 1.3. Three-pronged approach to flexible electronics
  • 1.4. Defining flexible electronics
  • 1.5. Broad scope of flexible electronics
  • 1.6. Organization of the book
  • 1.7. Discussion and conclusions
  • part I. Mechanical background. 2. Mechanical bending of a circuit
  • 2.1. Introduction
  • 2.2. Bending-mode deformation
  • 2.3. Curvature and radius of curvature
  • 2.4. Neutral axis
  • 2.5. Critical strain and critical radius of curvature
  • 2.6. [epsilon]Critical and [rho]Critical as characteristic parameters defining flexible, compliant and stretchable electronics
  • 2.7. Discussion and conclusions
  • 3. Stresses and strains in the hard-film-soft-substrate structure
  • 3.1. Introduction
  • 3.2. Stresses in thin films
  • 3.3. Built-in residual stress
  • 3.4. Tensile versus compressive built-in stress in a film-on-foil structure in flexible electronics
  • 3.5. Thermal coefficient mismatch stress
  • 3.6. Mechanical stress and strain at different stages in a film-on-foil structure
  • 3.7. Modeling the film-on-foil structure
  • 3.8. Applications of the model
  • 3.9. Discussion and conclusions
  • 4. Curvature and overlay alignment of the hard-film-soft-substrate structure
  • 4.1. Introduction
  • 4.2. Classical theory of curvature produced by thin film deposition
  • 4.3. Evolution of spherical shape from the dominance of the substrate effect
  • 4.4. Radius of curvature of cylindrical roll contour for a compliant substrate
  • 4.5. Discussion and conclusions
  • 5. Providing stretchability by controlled buckling of films
  • 5.1. Introduction
  • 5.2. Spontaneously produced ordered structures
  • 5.3. Using ordered structures in stretchable electronics
  • 5.4. Process of formation of activated/inactivated sites
  • 5.5. The buckling profile
  • 5.6. Approach and assumptions in the formulation of buckling geometry model
  • 5.7. Bending energy Ub in thin film
  • 5.8. Membrane strain ([epsilon]11)
  • 5.9. In-plane displacement u1
  • 5.10. Modifying the strain equation
  • 5.11. Membrane energy in the thin film (Um)
  • 5.12. Substrate energy (Us)
  • 5.13. Total energy (U)
  • 5.14. Amplitude and critical strain
  • 5.15. Independence of amplitude from thin film properties
  • 5.16. Maximum strain
  • 5.17. Environmental protection of buckled thin film in a practical application
  • 5.18. Substrate effects
  • 5.19. Discussion and conclusions
  • 6. Bending brittle films
  • 6.1. Introduction
  • 6.2. Failure by cracking, slipping and delamination
  • 6.3. Surface strain, interfacial shear stress and interfacial normal (or peeling) stress
  • 6.4. Applying self-equilibrium beam theory for trilayer electronic assemblies
  • 6.5. Analyzing a structure with a slipping crack on the interface between Si thin film and PET substrate
  • 6.6. Fracture toughness and delamination toughness of brittle thin films on compliant substrates by controlled buckling experiments
  • 6.7. Building self-healing capabilities in circuits
  • 6.8. Discussion and conclusions
  • 7. Deformation and cycling of ductile films
  • 7.1. Introduction
  • 7.2. In situ fragmentation testing of copper films
  • 7.3. Cyclic bending of copper films
  • 7.4. Discussion and conclusions
  • 8. Straining permeation barriers
  • 8.1. Introduction
  • 8.2. The electromechanical two-point bending equipment
  • 8.3. The [delta]R/R0 ratio-strain curve for the film
  • 8.4. Internal compressive strain in the film
  • 8.5. Controlling internal compressive strain in a film
  • 8.6. Inorganic-organic multilayer permeation barrier
  • 8.7. Failure mechanisms of inorganic/organic coatings
  • 8.8. Discussion and conclusions
  • part II. Materials. 9. Inorganic materials
  • 9.1. What are inorganic materials?
  • 9.2. Amorphous silicon films
  • 9.3. Hydrogen-terminated amorphous silicon (a-Si:H) films
  • 9.4. Nanocrystalline (nc), microcrystalline ([mu]c) and polycrystalline (pc) silicon films
  • 9.5. Solution-processed a-Si and pc-Si films
  • 9.6. Transparent oxides
  • 9.7. Zinc oxide-based binary and ternary oxides
  • 9.8. High dielectric constant materials
  • 9.9. Discussion and conclusions
  • 10. Organic materials
  • 10.1. What are organic materials?
  • 10.2. Mechanisms of electrical behavior of organic compounds
  • 10.3. Dielectric materials
  • 10.4. Semiconducting materials
  • 10.5. Organic conductors
  • 10.6. Discussion and conclusions
  • 11. Nanomaterials : CNTs, nanowires, graphene and 2D materials
  • 11.1. What is a nanomaterial?
  • 11.2. Two approaches to nanomaterial film growth/deposition on flexible substrates
  • 11.3. Direct CNT growth on PI
  • 11.4. Direct Si NW growth on PI
  • 11.5. Direct graphene pattern growth on flexible glass substrate
  • 11.6. Direct low-temperature synthesis of MoS2 on PI substrate
  • 11.7. CNT film transfer to any substrate
  • 11.8. Microwave-assisted V-CNT array patterning on PC substrate
  • 11.9. Transfer printing of silicon NWs to PDMS
  • 11.10. PMMA-mediated graphene transfer to non-specific substrates
  • 11.11. Graphene transfer to PET substrate via hot-press lamination (HPL) and ultraviolet adhesive (UVA)
  • 11.12. Transfer of MoS2 devices to PI foil
  • 11.13. Discussion and conclusions
  • part III. Manufacturing equipment and machines. 12. Printing techniques
  • 12.1. What is printing?
  • 12.2. Classification of printing technologies (I) : subtractive versus additive
  • 12.3. Classification of printing technologies (II) : contact versus non-contact
  • 12.4. Gravure printing
  • 12.5. Gravure offset printing
  • 12.6. Flexographic printing
  • 12.7. Lithographic printing
  • 12.8. Offset lithographic printing
  • 12.9. Screen printing
  • 12.10. Inkjet printing
  • 12.11. Electrohydrodynamic printing
  • 12.12. Pyroelectrodynamic printing
  • 12.13. Dielectrophoretic printing
  • 12.14. Surface acoustic wave (SAW) printing
  • 12.15. Discussion and conclusions
  • 13. Vacuum deposition
  • 13.1. What is vacuum deposition?
  • 13.2. Vacuum evaporation
  • 13.3. Sputtering
  • 13.4. Molecular beam epitaxy (MBE)
  • 13.5. Organic molecular beam deposition (OMBD)
  • 13.6. Organic vapor phase deposition (OVPD)
  • 13.7. Chemical vapor deposition (CVD)
  • 13.8. Discussion and conclusions
  • 14. Silicon microelectronics/MEMS processes
  • 14.1. Introduction
  • 14.2. Thermal oxidation of silicon
  • 14.3. Thermal diffusion of impurities into silicon
  • 14.4. Ion implantation
  • 14.5. Photolithography (deep UV or optical lithography) and etching
  • 14.6. Electron-beam (e-beam) lithography
  • 14.7. Discussion and conclusions
  • 15. Packaging
  • 15.1. Electronic packaging or encapsulation
  • 15.2. Ultra-thin chip-in flex technology
  • 15.3. Flip-chip assembly of ultra-thin silicon chips on flexible substrates
  • 15.4. High-yield manufacturing process for flip-chip assembly of 25 [mu]m thick silicon dies on polyimide substrates
  • 15.5. Laser-enabled advanced packaging (LEAP)
  • 15.6. Thermo-mechanical selective laser-assisted die transfer (tmSLADT) method
  • 15.7. Discussion and conclusions.