Cargando…

Nonlinear guided wave optics : a testbed for extreme waves /

Experiments and theory have rapidly progressed on nonlinear optical extreme waves, showing that guided wave nonlinear optics and fiber lasers provide a relatively simple, accessible and controllable test bed for the observations and accurate statistical studies of extreme wave phenomena that obey th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wabnitz, S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017]
Colección:IOP (Series). Release 4.
IOP expanding physics.
Series in emerging technologies in optics and photonics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Extreme events in forced oscillatory media in zero, one and two dimensions
  • 1.1. Introduction
  • 1.2. Zero dimensions
  • 1.3. One dimension
  • 1.4. Two dimensions
  • 1.5. Conclusion
  • 2. Extreme waves in stimulated backscattering and frequency conversion processes
  • 2.1. Introduction
  • 2.2. Fundamental rogue wave solutions
  • 2.3. Higher-order rogue wave solutions
  • 2.4. Rogue wave solutions in the degenerate case
  • 2.5. Rogue wave existence and baseband MI
  • 2.6. Numerical simulations
  • 2.7. Conclusions
  • 3. Irreversibility and squeezing of shock waves
  • 3.1. Introduction
  • 3.2. Hydrodynamic approximation of dispersive shock waves
  • 3.3. Highly non-local limit and irreversibility
  • 3.4. Squeezing
  • 3.5. Conclusions
  • 4. Observation of the rupture of a photon dam in an optical fiber
  • 4.1. Introduction
  • 4.2. Theory of classic and dispersive dam breaking
  • 4.3. Experiment
  • 4.4. Conclusions
  • 5. Instabilities and extreme events in all-normal dispersion mode-locked fibre lasers
  • 5.1. Introduction
  • 5.2. All-normal dispersion mode-locked fibre lasers
  • 5.3. Stable mode-locking
  • 5.4. Noise-like emission
  • 5.5. Real-time measurements and extreme Raman fluctuations
  • 5.6. Soliton explosions
  • 5.7. Metastable dark solitons in radiation build-up dynamics
  • 5.8. Conclusions
  • 6. Extreme wave dynamics from incoherent dissipative solitons in fiber laser cavities
  • 6.1. Introduction : the notion of incoherent dissipative solitons
  • 6.2. Dissipative rogue waves from chaotic pulse bunching
  • 6.3. Extreme vector waves
  • 6.4. Conclusions
  • 7. Ubiquitous nature of modulation instability : from periodic to localized perturbations
  • 7.1. Introduction
  • 7.2. Breather formalism
  • 7.3. Experimental demonstrations
  • 7.4. Localized noise-driven modulation instability
  • 7.5. Conclusions
  • 8. Rogue waves in photorefractive media
  • 8.1. Introduction
  • 8.2. Spatial rogue waves in photorefractive ferroelectrics
  • 8.3. Optical instabilities and strong wave turbulence
  • 8.4. Incoherence, saturation, and solitons in extreme waves
  • 8.5. Future developments
  • 9. Vector rogue waves driven by polarisation instabilities
  • 9.1. Introduction
  • 9.2. Bright and dark rogue waves in mode-locked fibre laser
  • 9.3. Synchronisation and desynchronisation phenomena in a long cavity Er-doped fibre laser
  • 9.4. Summary
  • 10. Fundamental rogue waves and their superpositions in nonlinear integrable systems
  • 10.1. Introduction
  • 10.2. NLSE rogue waves
  • 10.3. Splitting of higher-order rogue waves
  • 10.4. Extended equation
  • 10.5. Integrable extensions
  • 10.6. Infinitely long NLSE extensions
  • 10.7. Conclusions
  • 11. Are rogue waves really rogue?
  • 11.1. Introduction
  • 11.2. Definition of rogue waves : predictability
  • 11.3. Rogue waves in the multi-filament scenario
  • 11.4. Comparison of the three different rogue wave supporting systems
  • 11.5. Filament rogue waves
  • 11.6. Predictability of rogue waves
  • 11.7. Conclusion
  • 12. Rogue waves in integrable turbulence : semi-classical theory and fast measurements
  • 12.1. Introduction
  • 12.2. Semi-classical limit of focusing 1D-NLSE and rogue waves
  • 12.3. Integrable turbulence and the inverse scattering transform method
  • 12.4. Experiments in optical fibers
  • 12.5. Conclusion
  • 13. Rogue wave formation in highly birefringent fiber
  • 13.1. Introduction
  • 13.2. Model and linear stability analysis
  • 13.3. Statistical analysis of the RW in the highly birefringent fiber
  • 13.4. Results in the normal dispersion regime
  • 13.5. Results in a normal dispersion
  • 13.6. Conclusion
  • 14. Spatiotemporal nonlinear dynamics in multimode fibers
  • 14.1. Introduction
  • 14.2. Spatial beam self-cleaning
  • 14.3. Theoretical models of spatiotemporal dynamics
  • 14.4. Spatiotemporal instabilities
  • 14.5. Supercontinuum generation
  • 15. Noise-initiated dynamics in nonlinear fiber optics
  • 15.1. Introduction
  • 15.2. Modulation instability and breather solutions
  • 15.3. Noise-driven modulation instability
  • 15.4. Measuring chaotic dynamics in real time
  • 15.5. Conclusions
  • 16. Cavity soliton dynamics and rogue waves in driven Kerr cavities
  • 16.1. Introduction
  • 16.2. Spatiotemporal chaos in Lugiato-Lefever model
  • 16.3. Cavity soliton dynamics and rogue waves in the delayed LLE
  • 16.4. Conclusions.