Cargando…

Rotation, reflection, and frame changes : orthogonal tensors in computational engineering mechanics /

Whilst vast literature is available for the most common rotation-related tasks such as coordinate changes, most reference books tend to cover one or two methods, and resources for less-common tasks are scarce. Specialized research applications can be found in disparate journal articles, but a self-c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Brannon, R. M. (Rebecca M.) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 4.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750314541
003 IOP
005 20180507222516.0
006 m eo d
007 cr cn |||m|||a
008 180504s2018 enka ob 000 0 eng d
020 |a 9780750314541  |q ebook 
020 |a 9780750314534  |q mobi 
020 |z 9780750314527  |q print 
024 7 |a 10.1016/978-0-7503-1454-1  |2 doi 
035 |a (CaBNVSL)thg00975899 
035 |a (OCoLC)1034808900 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a TA329  |b .B737 2018eb 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Brannon, R. M.  |q (Rebecca M.),  |e author. 
245 1 0 |a Rotation, reflection, and frame changes :  |b orthogonal tensors in computational engineering mechanics /  |c R.M. Brannon. 
246 3 0 |a Orthogonal tensors in computational engineering mechanics. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2018] 
300 |a 1 online resource (various pagings) :  |b color illustrations. 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 4] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20180401"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Introduction -- 2. Notation and tensor analysis essentials -- 2.1. Linear fractional transform -- 2.2. Visualizing rotations 
505 8 |a 3. Orthogonal basis and coordinate transformations -- 3.1. Superimposed rotations -- 3.2. Basis rotations 
505 8 |a 4. Rotation operations -- 4.1. Why apparent inconsistency in placement of the negative sign? 
505 8 |a 5. Axis and angle of rotation -- 5.1. Euler-Rodrigues formula -- 5.2. Computing the rotation tensor given axis and angle -- 5.3. Corollary to the Euler-Rodrigues formula : existence of a preferred basis -- 5.4. Computing axis and angle given the rotation tensor 
505 8 |a 6. Rotations contrasted with reflections -- 7. Quaternion representation of a rotation -- 7.1. Shoemake's form -- 7.2. Relationship between quaternion and axis/angle forms 
505 8 |a 8. Dyadic form of an invertible linear operator -- 8.1. Special case : lab basis -- 8.2. Special case : dyadic form of a rotation operation -- 8.3. Constructing a rotation that will transform one specified vector to another specified vector -- 8.4. Constructing a rotation from knowledge of initial and final 'marker' locations in a body 
505 8 |a 9. Sequential rotations -- 9.1. The distinction between fixed and follower axes -- 9.2. Roll, pitch, yaw : sequential rotations about fixed (laboratory) axes -- 9.3. Euler angles : sequential rotations about 'follower' axes 
505 8 |a 10. Series expression for a rotation -- 10.1. Cayley transformations 
505 8 |a 11. Spectrum of a rotation -- 12. Polar decomposition -- 12.1. Difficult definition of the deformation gradient -- 12.2. Intuitive definition of the deformation gradient -- 12.3. The Jacobian of the deformation -- 12.4. Invertibility of a deformation -- 12.5. Sequential deformations -- 12.6. Matrix analysis version of the polar-decomposition theorem -- 12.7. Polar decomposition--a hindsight intuitive interpretation -- 12.8. Variational interpretation of the polar decomposition -- 12.9. A more rigorous (classical) presentation of the polar-decomposition theorem -- 12.10. The 'fast' way to do a polar decomposition in two dimensions -- 12.11. Scaling properties of a polar decomposition -- 12.12. Classic method for obtaining a polar decomposition in 3D -- 12.13. Another iterative polar decomposition in 3D 
505 8 |a 13. Strain measures -- 13.1. One-dimensional strain measures -- 13.2. Three-dimensional strain definitions 
505 8 |a 14. Remapping, advecting, or interpolating rotations -- 14.1. Proposal 1 : Map and re-compute the polar decomposition -- 14.2. Proposal 2 : Discard the 'stretch' part of a mixed rotation -- 14.3. Proposal 3 : Advect the pseudo-rotation vectors -- 14.4. Proposal 4 : Mix the quaternions -- 14.5. Advection enhancement strategy #1 : solve the compatibility equations -- 14.6. Mixing enhancement strategy #2 : Lagrangian tracers 
505 8 |a 15. Rates and other derivatives of rotation -- 15.1. The 'spin' tensor -- 15.2. The angular velocity vector -- 15.3. Angular velocity in terms of axis and angle of rotation -- 15.4. Derivatives of rotation with respect to angle and axis -- 15.5. Difference between vorticity and polar spin -- 15.6. The (commonly mis-stated) Gosiewski's theorem -- 15.7. Rates of sequential rotations -- 15.8. Rates of simultaneous rotations -- 15.9. Integration of rotation rates 
505 8 |a 16. Variations of tensor-valued functions of scalars and vectors -- 16.1. A motivational example -- 16.2. A comment about rates of proper functions -- 16.3. The time rate of a principal function of a symmetric tensor -- 16.4. Time rate of the logarithmic strain 
505 8 |a 17. Statistics of random orientation -- 17.1. Elementary probability and statistics refresher -- 17.2. Uniformly random unit vectors--the theory -- 17.3. Uniformly random unit vectors--alternative implementation -- 17.4. 'Centroidally random' unit vectors -- 17.5. 'Nautical' visualization of a rotation -- 17.6. Uniformly random rotations -- 17.7. A basic algorithm for generating a uniformly random rotation -- 17.8. Generalization to generate transversely isotropic orientation distributions -- 17.9. Alternative algorithm for generating a uniformly random rotation -- 17.10. Shoemake's algorithm for uniformly random rotations 
505 8 |a 18. Introduction to material and tensor symmetries -- 18.1. Anisotropy classification via group theory -- 18.2. Quantifying and visualizing orientations 
505 8 |a 19. Frame indifference -- 19.1. A 3D spring--who expected it would be this hard!? -- 19.2. Introduction to frame indifference -- 19.3. Kinematics changes under superimposed rigid motion -- 19.4. Mechanics principles frame change 
505 8 |a 20. Tensor symmetry (not material symmetry) -- 20.1. What is isotropy of a tensor? -- 20.2. Isotropic second-order tensors in 3D space -- 20.3. Isotropic second-order tensors in 2D space -- 20.4. Isotropic fourth-order tensors in 3D -- 20.5. The isotropic part of a fourth-order tensor -- 20.6. Tensor transverse isotropy -- 20.7. Material transverse isotropy 
505 8 |a 21. Scalars and invariants -- 22. PMFI for incremental constitutive models -- 22.1. A frame-indifferent spring rate equation -- 22.2. The PMFI in general -- 22.3. PMFI in rate forms of the constitutive equations -- 22.4. Co-rotational rates (convected, Jaumann, polar, etc) -- 22.5. Lie derivatives and reference configurations -- 22.6. Frame indifference is only an essential (not final) step 
505 8 |a 23. Rigid-body mechanics -- 23.1. Rate of rotation -- 23.2. The slope-intercept of rigid motion -- 23.3. The point-slope description of rigid motion -- 23.4. Velocity and angular velocity for rigid motion -- 23.5. Time rate of a vector embedded in a rigid body -- 23.6. Acceleration for rigid motion -- 23.7. Important properties of a rigid body -- 23.8. Linear momentum of a rigid body -- 23.9. Angular momentum of a rigid body -- 23.10. Kinetic energy of a rigid body -- 23.11. Newton's equation (balance of linear momentum) -- 23.12. Euler's equation (balance of angular momentum) 
505 8 |a 24. Pseudo-body force for spinning problems -- 24.1. Kinematics of superimposed rotation (general analysis) -- 24.2. Fiducial body force for superimposed rigid motion 
505 8 |a 25. Computer graphics visualization -- 25.1. Orientation of the body -- 25.2. Mapping from the body to the screen -- 25.3. Mapping from the screen to the virtual visible surface -- 25.4. Changing the screen image of a body 
505 8 |a 26. Voigt and Mandel components -- 26.1. An introductory 3D example -- 26.2. Voigt components (inefficient and error prone!) -- 26.3. Mandel components (nice!) -- 26.4. Voigt components of fourth-order minor-symmetric tensors -- 26.5. Mandel components of fourth-order minor-symmetric tensors -- 26.6. Mandel components of fourth-order general tensors -- 26.7. Fourth-order linear transformations -- 26.8. Spectral analysis of fourth-order tensors 
505 8 |a 27. Higher-order rotations -- 27.1. Rotators : fourth-order rotations in Mandel form -- 27.2. Fourth-order 'focused identity' (projection) tensors -- 27.3. Focused rotations -- 27.4. Components of focused identities and elided projectors -- 27.5. Single-plane fourth-order rotations -- 27.6. Preferred basis for single-plane rotation -- 27.7. Double-plane fourth-order rotations -- 27.8. Multi-plane fourth-order rotations -- 28. Closing remarks. 
520 3 |a Whilst vast literature is available for the most common rotation-related tasks such as coordinate changes, most reference books tend to cover one or two methods, and resources for less-common tasks are scarce. Specialized research applications can be found in disparate journal articles, but a self-contained comprehensive review that covers both elementary and advanced concepts in a manner comprehensible to engineers is rare. Rotation, Reflection, and Frame Changes surveys a refreshingly broad range of rotation-related research that is routinely needed in engineering practice. By illustrating key concepts in computer source code, this book stands out as an unusually accessible guide for engineers and scientists in engineering mechanics. 
521 |a Graduate students and researchers principally in engineering and materials modelling. Mathematicians with an interest in theoretical mechanics and computational mechanics. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a For over 25 years, first as a principal researcher (and manager) at Sandia National Laboratories and more recently as an Associate Professor of Mechanical Engineering at the University of Utah and ASME fellow, Dr Brannon has developed practical engineering constitutive models for brittle and ductile material failure at high strain rates and large strains. Her research has investigated a wide range of materials including piezoelectric ceramics, armor ceramics, geological materials, energetic materials, and metals (usually for high-rate applications). Constitutive models she has developed are used in DoD and DOE production codes such as CTH and ALEGRA. Applications have included protective structures, underground structure integrity, electroactive power supplies, artificial hip implant rapid materials ranking, shock-induced vaporization, in vivo measurements of callus strains, and other numerous other problems in the applied sciences. Dr Brannon is particularly known for her monographs on tensor analysis, plasticity, code portability, code verification, and massive deformation kinematics in the material point method. 
588 0 |a Title from PDF title page (viewed on May 4, 2018). 
650 0 |a Engineering mathematics. 
650 0 |a Mechanics, Applied. 
650 0 |a Mechanics, Analytic. 
650 7 |a Classical mechanics.  |2 bicssc 
650 7 |a SCIENCE / Mechanics / General.  |2 bisacsh 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750314527 
830 0 |a IOP (Series).  |p Release 4. 
830 0 |a IOP expanding physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-1454-1  |z Texto completo