Cargando…

Inverse imaging with Poisson data : from cells to galaxies /

Inverse Imaging with Poisson Data is an invaluable resource for graduate students, postdocs and researchers interested in the application of inverse problems to the domains of applied sciences, such as microscopy, medical imaging and astronomy. The purpose of the book is to provide a comprehensive a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bertero, Mario (Autor), Boccacci, Patrizia (Autor), Ruggiero, Valeria (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750314374
003 IOP
005 20190118225503.0
006 m eo d
007 cr cn |||m|||a
008 190116s2018 enka ob 000 0 eng d
020 |a 9780750314374  |q ebook 
020 |a 9780750314398  |q mobi 
020 |z 9780750314381  |q print 
024 7 |a 10.1088/2053-2563/aae109  |2 doi 
035 |a (CaBNVSL)thg00978444 
035 |a (OCoLC)1082881981 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a TA1637  |b .B475 2018eb 
072 7 |a TTBM  |2 bicssc 
072 7 |a TEC015000  |2 bisacsh 
082 0 4 |a 621.36/7/0151535  |2 23 
100 1 |a Bertero, Mario,  |e author. 
245 1 0 |a Inverse imaging with Poisson data :  |b from cells to galaxies /  |c Mario Bertero, Patrizia Boccacci, Valeria Ruggiero. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2018] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 6] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20181201"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a 1. Introduction -- 1.1. Scope of the book and topic selection -- 1.2. Structure of the book 
505 8 |a 2. Examples of applications -- 2.1. Fluorescence microscopy -- 2.2. Medical imaging (tomography) -- 2.3. Astronomy 
505 8 |a 3. Mathematical modeling -- 3.1. Imaging system and forward problem -- 3.2. Ill-posedness of the backward (inverse) problem -- 3.3. Detection and data sampling -- 3.4. Detection and data noise -- 3.5. The discrete models -- 3.6. Supplementary material 
505 8 |a 4. Statistical approaches in a discrete setting -- 4.1. Maximum likelihood approach and data-fidelity function -- 4.2. Bayesian regularization -- 4.3. Denoising problems -- 4.4. Selection of the regularization parameter -- 4.5. The Bregman iteration -- 4.6. Supplementary material 
505 8 |a 5. Simple reconstruction methods -- 5.1. Expectation maximization (EM) or Richardson-Lucy (RL) method -- 5.2. Ordered subset expectation maximization method -- 5.3. One-step late (OSL) method -- 5.4. Split gradient method (SGM) -- 5.5. Supplementary material 
505 8 |a 6. Optimization methods -- 6.1. Some basic tools : proximity operators and conjugate functions -- 6.2. The family of forward-backward (FB) splitting methods -- 6.3. FB methods for smooth problems of image reconstruction -- 6.4. FB methods for non-smooth problems of image reconstruction -- 6.5. The alternating direction method of multipliers (ADMM) -- 6.6. Primal-dual methods -- 6.7. Majorization-minimization approach -- 6.8. Towards non-convex minimization problems 
505 8 |a 7. Numerics -- 7.1. Semi-convergent methods -- 7.2. Methods for edge-preserving regularization -- 7.3. Image reconstruction of real data 
505 8 |a 8. Specific topics in image deblurring -- 8.1. Super-resolution by data inversion -- 8.2. Boundary artifacts correction -- 8.3. Blind deconvolution -- 8.4. Images with point and smooth sources -- 8.5. Images with space-variant blur 
505 8 |a 9. Towards a regularization theory -- 9.1. Deterministic regularization approaches -- 9.2. Statistical approaches -- 9.3. Comments and concluding remarks. 
520 3 |a Inverse Imaging with Poisson Data is an invaluable resource for graduate students, postdocs and researchers interested in the application of inverse problems to the domains of applied sciences, such as microscopy, medical imaging and astronomy. The purpose of the book is to provide a comprehensive account of the theoretical results, methods and algorithms related to the problem of image reconstruction from Poisson data within the framework of the maximum likelihood approach introduced by Shepp and Vardi. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. 
545 |a Mario Bertero received an advanced degree in physics from the University of Genova in Italy in 1960, and he obtained the libera docenza in theoretical physics in 1968. He has professorships in mathematics and computer science and was the editor of Inverse Problems from 1990-1994. He has retired from teaching but not from research. Patrizia Boccacci received her advanced degree in physics from the University of Genova in Italy in 1980. She is currently an associate professor in the Department of Informatics, Bioengineering, Robotics and System Engineering at the University of Genova. Valeria Ruggiero received her advanced degree in mathematics from the University of Ferrara in Italy in 1978. She is a professor in numerical analysis at the University of Ferrara and is the director of the National Group for Scientific Computation of the Istituto Nazionale di Alta Matematica (INdAM). 
588 0 |a Title from PDF title page (viewed on January 16, 2019). 
650 0 |a Image processing  |x Mathematics. 
650 0 |a Inverse problems (Differential equations) 
650 0 |a Poisson distribution. 
650 7 |a Imaging systems & technology.  |2 bicssc 
650 7 |a TECHNOLOGY & ENGINEERING / Imaging Systems.  |2 bisacsh 
700 1 |a Boccacci, Patrizia,  |e author. 
700 1 |a Ruggiero, Valeria,  |e author. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750314381 
830 0 |a IOP (Series).  |p Release 6. 
830 0 |a IOP expanding physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-1437-4  |z Texto completo