Cargando…

Radiation detection for nuclear physics : methods and industrial applications /

Radiation detection is key to experimental nuclear physics as well as underpinning a wide range of applications in nuclear decommissioning, homeland security and medical imaging. This book presents the state-of-the-art in radiation detection of light and heavy ions, beta particles, gamma rays and ne...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jenkins, David (David Gareth) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:IOP series in nuclear spectroscopy and nuclear structure.
IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 9. Neutron detectors
  • 9.1. Fast neutron detectors
  • 9.2. Thermal neutron detectors
  • 9.3. Industrial and security applications of neutron detection
  • part III. Electronics and data analysis
  • 10. Readout electronics and data analysis
  • 10.1. Strategy for electronics readout of detectors
  • 10.2. Analogue electronics
  • 10.3. Digital data acquisition
  • 10.4. Data analysis
  • 11. Closing remarks.
  • part I. Theory and context. 1. Nuclear structure and radioactive decay
  • 1.1. Introduction to basic atomic and nuclear structure
  • 1.2. Radioactive decay
  • 1.3. Alpha decay
  • 1.4. Beta decay
  • 1.5. Fission
  • 1.6. Excited states
  • 1.7. Transitions between nuclear excited states : electromagnetic decay modes
  • 2. Interaction of ionising radiation with matter
  • 2.1. General remarks
  • 2.2. Protons, alpha particles and heavy ions
  • 2.3. Electrons and positrons
  • 2.4. Gamma rays
  • 2.5. Neutrons
  • 3. Radioactive sources in the laboratory
  • 3.1. Radioactive sources
  • 3.2. Laboratory methods for studying exotic nuclei, nuclear reactions and nuclear excited states
  • 3.3. Stable beam methods
  • 3.4. Radioactive beams
  • 3.5. Neutron-induced reaction studies
  • part II. Detectors. 4. The right detector for the job
  • 4.1. Considerations in designing a detector setup
  • 4.2. Detector design and modelling
  • 4.3. Overview of major detector types
  • 4.4. Map of detector technologies to different applications
  • 5. Scintillator detectors for gamma-ray detection
  • 5.1. Inorganic scintillator detectors
  • 5.2. Recent advances in scintillator technology
  • 5.3. Photosensors for scintillation light collection
  • 5.4. Scintillator detector arrays
  • 6. Semiconductor detectors for gamma-ray detection
  • 6.1. Germanium detectors--an overview
  • 6.2. Hyperpure germanium detectors
  • 6.3. Key parameters for germanium detectors
  • 6.4. Principal classes of germanium detector
  • 6.5. Improving germanium detector performance
  • 6.6. Room temperature semiconductor detectors for gamma rays
  • 7. Applications of gamma-ray detection for society, medicine and other areas of science
  • 7.1. Homeland security
  • 7.2. Nuclear decommissioning
  • 7.3. Environmental monitoring
  • 7.4. Oil and gas, mineral exploration
  • 7.5. Medical imaging
  • 7.6. Gamma-ray astronomy
  • 8. Charged particle detection
  • 8.1. Alpha and heavy ion detection
  • 8.2. Spectroscopy of charged particles : silicon detectors
  • 8.3. Applications relevant to fission
  • 8.4. [beta]+/- and electron detection