Cargando…

Energy density functional methods for atomic nuclei /

Energy density functional (EDF) approaches have become over the past twenty years a powerful framework to study the structure and reactions of atomic nuclei. This book gives an updated presentation of non-relativistic and covariant energy functionals, single- and multi-reference methods, and techniq...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Schunck, Nicolas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Non-relativistic energy density functionals
  • 1.1. Introduction
  • 1.2. Energy density functional kernels
  • 1.3. Pairing and Coulomb functionals
  • 2. Covariant energy density functionals
  • 2.1. Relativistic description of quantum systems
  • 2.2. Symmetry properties of QCD
  • 2.3. Effective Lagrangians for nuclear systems
  • 2.4. Phenomenological Lagrangians
  • 2.5. Derivation of the covariant energy density functional
  • 2.6. Advantages of a relativistic description of nuclear systems
  • 3. Single-reference and multi-reference formulations
  • 3.1. Single-reference implementation of nuclear energy density functionals
  • 3.2. Multi-reference implementation of nuclear energy density functionals
  • 4. Time-dependent density functional theory
  • 4.1. Time evolution equations
  • 4.2. Role of pairing correlations in nuclear dynamics
  • 4.3. Local DFT for superfluids
  • 4.4. Validation of the TDSLDA : the unitary Fermi gas
  • 4.5. Symmetry-breaking
  • 4.6. Time-dependent techniques
  • 4.7. Selected examples
  • 5. Small-amplitude collective motion
  • 5.1. RPA with a Hamiltonian
  • 5.2. RPA in density functional theory
  • 5.3. Sum rules
  • 5.4. Pairing correlations and QRPA formalism
  • 5.5. Charge-changing QRPA
  • 6. Large-amplitude collective motion
  • 6.1. Collective subspace
  • 6.2. Adiabatic time-dependent Hartree-Fock theory
  • 6.3. Adiabatic self-consistent collective coordinate method
  • 6.4. Gaussian overlap approximation of the GCM
  • 7. Finite temperature
  • 7.1. A reminder of statistical quantum mechanics
  • 7.2. Finite-temperature Hartree-Fock theory
  • 7.3. Finite-temperature Hartree-Fock-Bogoliubov theory
  • 7.4. Finite-temperature RPA
  • 7.5. Beyond mean field
  • 8. Numerical implementations
  • 8.1. Configuration space and basis expansions
  • 8.2. Lattice techniques
  • 8.3. The self-consistent loop
  • 8.4. Time-evolution algorithms
  • 9. Calibration of energy functionals
  • 9.1. Parameters of energy functionals
  • 9.2. Physical observables
  • 9.3. Uncertainties of EDF parameters
  • 9.4. Propagation of theoretical uncertainties.