Cargando…

Computational anatomical animal models : methodological developments and research applications /

Computational Anatomical Animal Models: Methodological developments and research applications provides a comprehensive review of the history and technologies used for the development of computational small animal models with a focus on their application in preclinical imaging and experimental radiat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zaidi, Habib (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2018]
Colección:IOP (Series). Release 6.
IOP expanding physics.
IPEM-IOP series in physics and engineering in medicine and biology.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • part I. Computational models. 1. Historical development and overview of computational animal models
  • 1.1. Introduction
  • 1.2. Construction of computational models
  • 1.3. Overview of existing computational animal models
  • 1.4. Popular simulation tools for computational models
  • 1.5. Summary
  • 2. Design and construction of computational animal models
  • 2.1. Introduction
  • 2.2. Mathematical phantoms
  • 2.3. Voxel-based phantoms
  • 2.4. BREP phantoms
  • 2.5. Summary and future perspectives
  • 3. Overview of computational mouse models
  • 3.1. Introduction
  • 3.2. Construction of computational mouse models
  • 3.3. History of computational mouse models
  • 3.4. Simulation tools used with the computational mouse models
  • 3.5. Applications of computational mouse models
  • 3.6. Summary
  • 4. Overview of computational rat models
  • 4.1. Introduction
  • 4.2. Overview of existing rat models
  • 4.3. Development and application of HUST computational rat models
  • 4.4. Summary
  • 5. Overview of computational frog models
  • 5.1. Introduction
  • 5.2. History and construction of computational frog models
  • 5.3. Monte Carlo simulations with computational frog models
  • 5.4. Summary
  • 6. Overview of computational canine models
  • 6.1. Introduction
  • 6.2. General steps for developing canine models
  • 6.3. Current status of canine models
  • 6.4. Summary and future perspectives
  • 7. Overview of computational rabbit models
  • 7.1. Introduction
  • 7.2. Construction of rabbit models
  • 7.3. Model refinement
  • 7.4. Examples of electromagnetic and thermal dosimetry
  • 7.5. Summary
  • 8. Overview of other computational animal models
  • 8.1. Introduction
  • 8.2. Computational models of trout
  • 8.3. Computational models of crabs
  • 8.4. Computational models of flatfish
  • 8.5. Computational models of bees
  • 8.6. Computational models of deer
  • 8.7. Computational models of earthworms
  • 8.8. Computational models of ducks
  • 8.9. Computational models of goats
  • 8.10. Computational models of pigs
  • 8.11. Computational models of non-human primates
  • 8.12. Summary
  • 9. Simulation tools used with preclinical computational models
  • 9.1. Introduction
  • 9.2. Tools used for simulation
  • 9.3. The Monte Carlo simulation method
  • 9.4. Monte Carlo packages for preclinical studies
  • 9.5. Comparison of performance of Monte Carlo packages
  • part II. Applications in preclinical research. 10. Applications of computational animal models in ionizing radiation dosimetry
  • 10.1. Introduction
  • 10.2. Fundamentals of radiation dosimetry
  • 10.3. Applications in ionizing radiation dosimetry
  • 10.4. Discussion
  • 11. Computational animal phantoms for electromagnetic dosimetry
  • 11.1. Introduction
  • 11.2. Minimal requirements for EM dosimetry
  • 11.3. Methods
  • 11.4. Outlook
  • 11.5. Conclusions
  • 12. Applications of computational animal models in imaging physics research
  • 12.1. Introduction
  • 12.2. Computational animal models in imaging physics
  • 12.3. Applications of computational animal models in imaging physics research
  • 12.4. Summary and future directions
  • 13. Applications of computational animal models in radiation therapy research
  • 13.1. Introduction
  • 13.2. Design of digital mouse phantoms
  • 13.3. Monte Carlo simulation platforms
  • 13.4. Simulation of head of accelerators and energy spectra
  • 13.5. Types of absorbed doses calculated in digital mouse models
  • 13.6. Recommendations by collaborative working groups and agencies
  • 13.7. Differences between human organs and digital mouse organs in radiation therapy
  • 13.8. Excerpts of applications in digital mouse radiotherapy/dosimetry
  • 13.9. Conclusions
  • 14. Summary and future outlook
  • 14.1. Summary
  • 14.2. Future outlook
  • 14.3. Acknowledgement.