Cargando…

Intensity modulated radiation therapy : a clinical overview /

Intensity modulated radiation therapy (IMRT) has become standard of care for most cancer sites that are managed by radiation therapy. This book documents the evolution of this technology over 35 years to the current level of volumetric arc modulated therapy (VMAT). It covers every aspect of this rad...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Das, Indra Jeet (Autor), Sanfilippo, Nicholas J. (Autor), Fogliata, Antonella (Autor), Cozzi, Luca (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:IPEM-IOP series in physics and engineering in medicine and biology.
IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 2. Beam modulation
  • 2.1. Forward planning
  • 2.2. Paradigm shift
  • 2.3. Simulated annealing
  • 3. Definitions and terminology
  • 3.1. Pixel
  • 3.2. Voxel
  • 3.3. Bixel (beamlet)
  • 3.4. Intensity level
  • 3.5. Segment
  • 3.6. Concept of dose painting
  • 4. IMRT devices
  • 4.1. Intensity modulation filter/compensator
  • 4.2. Dynamic Jaw
  • 4.3. MLC based
  • 4.4. Direct aperture optimization (DAO)
  • 4.5. Systems for IMRT
  • 5. IMRT, IMAT and VMAT
  • 5.1. IMRT
  • 5.2. IMAT
  • 5.3. Volumetric, modulated arc therapy, VMAT
  • 5.4. Outlook
  • 6. Intensity modulated planning process
  • 6.1. IMRT planning process
  • 6.2. Imaging
  • 6.3. Target volume
  • 6.4. DVH constraints
  • 6.5. Inverse planning
  • 6.6. MLC sequencing
  • 6.7. Transfer and treatment sequencing
  • 6.8. Phantom plan
  • 6.9. IMRT PSQA
  • 6.10. Treatment verification
  • 6.11. Record and verification
  • 7. Contouring
  • 7.1. Contouring for intensity modulation inverse planning
  • 7.2. Margins
  • 7.3. Motion and contouring
  • 7.4. Auto-segmentation
  • 8. Treatment planning
  • 8.1. Beam (and arc) geometry
  • 8.2. The collimator rotation
  • 8.3. Non-coplanarity
  • 8.4. Flattened and unflattened beams
  • 8.5. Modulation degrees and delivery accuracy
  • 8.6. The feathering : large field splitting and multi-isocentric setup
  • 8.7. Artifact handling
  • 8.8. The interplay effect
  • 8.9. The neutron production and the whole body dose : beam quality
  • 8.10. Conclusions on treatment planning
  • 9. Optimization
  • 9.1. The inverse planning concept
  • 9.2. The goals and the cost function
  • 9.3. The optimization objectives
  • 9.4. The optimization algorithms
  • 9.5. The direct aperture optimization
  • 9.6. The biological optimization
  • 9.7. Benefit and deficiencies in biological optimization
  • 9.8. Robust optimization
  • 10. Dose calculation
  • 10.1. Required accuracy in dose calculation
  • 10.2. Dose calculation algorithms and classification
  • 10.3. Type 'a', 'b', 'c' algorithm classification
  • 10.4. Dose-to-medium or dose-to-water?
  • 10.5. Dose calculation accuracy in various TPS implementations
  • 10.6. Fluence to dose and MLC parameters : another source of uncertainty
  • 10.7. The out-of-field dose
  • 10.8. Dose calculation with metallic objects
  • 10.9. Other elements influencing the dose calculation accuracy
  • 11. Plan variability
  • 11.1. Dosimetric variation : the intra- and inter-planner and planning system sources
  • 11.2. Knowledge-based planning
  • 11.3. Protocol-based automation
  • 11.4. Multi-criteria optimization
  • 11.5. MCO, a posteriori
  • 11.6. MCO, a priori
  • 11.7. Plan variability conclusion
  • 12. Quality assurance and verification
  • 12.1. Theory of comparison
  • 12.2. Silico method
  • 12.3. Measurements
  • 12.4. Log-file approach
  • 12.5. Artificial intelligence
  • 12.6. Outlook
  • 13. IMRT dose prescription and recording
  • 13.1. Planning variability
  • 13.2. ICRU-83 guidelines
  • 13.3. State of compliance
  • 13.4. Essentiality in IMRT
  • 14. Tumors of the central nervous system
  • 14.1. Epidemiology
  • 14.2. Anatomic considerations
  • 14.3. Clinical and diagnostic evaluation
  • 14.4. Intensity modulated radiation therapy : biologic considerations
  • 14.5. Intensity modulated radiation therapy : technical considerations
  • 14.6. IMRT for CNS tumors : general considerations
  • 14.7. Clinical experience of IMRT in brain tumors
  • 14.8. Clinical experience of IMRT in spinal and paraspinal tumors
  • 14.9. IMRT for craniospinal irradiation
  • 15. Head and neck cancer
  • 15.1. Epidemiology
  • 15.2. Anatomy
  • 15.3. Nasopharyngeal carcinoma : general considerations
  • 15.4. IMRT for nasopharyngeal carcinoma
  • 15.5. Oropharyngeal carcinoma : general considerations
  • 15.6. IMRT for oropharyngeal carcinoma
  • 15.7. Carcinoma of the oral cavity : general considerations
  • 15.8. IMRT for oral cavity carcinoma
  • 15.9. Cancer of the larynx and hypopharynx : general considerations
  • 16. Lung cancer
  • 16.1. Epidemiology
  • 16.2. Anatomy
  • 16.3. Lung cancer : general considerations
  • 16.4. IMRT for lung cancer
  • 17. Breast cancer
  • 17.1. Epidemiology
  • 17.2. Anatomy
  • 17.3. Breast cancer : general considerations
  • 17.4. IMRT for breast cancer
  • 18. Prostate cancer
  • 18.1. Epidemiology
  • 18.2. Anatomy
  • 18.3. Prostate cancer : general considerations
  • 18.4. Prostate cancer IMRT
  • 19. Cervical cancer
  • 19.1. Epidemiology
  • 19.2. Cervical cancer : general considerations
  • 19.3. IMRT for cervical cancer
  • 20. Summary and outlook
  • 20.1. Plan automation, adaptive therapy and artificial intelligence : a glance into the crystal ball
  • 20.2. Decision-making artificial intelligence (AI) guided radiotherapy.