Cargando…

Biomechanical modeling of the cardiovascular system /

Modeling has provided not only answers to questions related to normal or pathological function but also predicted multiple adaptations of the total and individual dynamic structures that are included in cardiovascular research. The original idea of this book was to produce a textbook to be used for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Armentano, Ricardo (Autor), Cabrera Fischer, Edmundo I. (Autor), Cymberknop, Leandro J. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2019]
Colección:IOP (Series). Release 6.
IOP expanding physics.
IPEM-IOP series in physics and engineering in medicine and biology.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Structural basis of the circulatory system
  • 1.1. Introduction
  • 1.2. Cardiac structure
  • 1.3. Vessel structure
  • 1.4. The circulatory system
  • 1.5. Human blood
  • 1.6. Microcirculation
  • 2. Human circulatory function
  • 2.1. Hemodynamics
  • 2.2. The left ventricular function
  • 2.3. Vessel function
  • 2.4. Blood rheology
  • 2.5. Venous return to right atrium
  • 3. Mathematical background for mechanical vessel analysis
  • 3.1. Biomechanics
  • 3.2. The constitutive equation
  • 3.3. Physics of the equilibrium of blood vessels
  • 3.4. Viscoelasticity
  • 3.5. Frequency dependence of the elastic modulus E([omega])
  • 4. Modeling of the cardiovascular function
  • 4.1. In vitro models
  • 4.2. Isolated perfused animal heart
  • 4.3. In vivo animal model
  • 4.4. Ex vivo animal model
  • 4.5. Steady and transient states
  • 4.6. Final comments
  • 5. Modeling of cardiovascular dysfunction
  • 5.1. Characteristics of human cardiovascular failure
  • 5.2. Anatomy and physiology of animals used to model human cardiovascular diseases
  • 5.3. Models of cardiac disease
  • 5.4. Models of vascular disease
  • 5.5. Models of cardiac failure
  • 5.6. Final comments
  • 6. Hemodynamic modelization during therapeutical interventions : counterpulsation
  • 6.1. Aortic counterpulsation
  • 6.2. Left ventricular changes during aortic counterpulsation
  • 6.3. Effects of aortic counterpulsation on blood circulation
  • 6.4. Indexes of aortic counterpulsation
  • 6.5. Arterial wall dynamics during aortic counterpulsation
  • 6.6. Juxta-aortic counterpulsation
  • 6.7. Pulmonary counterpulsation
  • 6.8. Enhanced external counterpulsation
  • 6.9. Final comments
  • 7. Arterial wall modelization in the time and frequency domain
  • 7.1. Linear elastic theory
  • 7.2. Implementation of models in arterial mechanics
  • 7.3. Elastic passive behavior
  • 7.4. Active elastic behavior
  • 7.5. Dynamic behavior
  • 8. Pulse propagation in arteries
  • 8.1. Introduction
  • 9. Damping in the vascular wall
  • 9.1. Physiological bases of wall damping and filtering
  • 9.2. Methodological approach
  • 9.3. Experimental applications
  • 10. Modeling of biological prostheses
  • 10.1. Introduction
  • 10.2. Biomechanical evaluation on electrospun vascular grafts
  • 11. Arterial hypertension, chaos and fractals
  • 11.1. Complexity, health and disease
  • 11.2. Fractal dimension : a holistic index
  • 11.3. Conclusion
  • 12. Mathematical blood flow models : numerical computing and applications
  • 12.1. Towards a patient-specific modeling for clinical applications
  • 12.2. Interaction between blood flow and the arterial wall : fluid-structure coupling
  • 12.3. Implementing 1D models in arterial simulations.