Understanding stellar evolution /
Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of s...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2017]
|
Colección: | AAS-IOP Astronomy.
IOP astronomy. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Stars : setting the stage
- 1.1. The sun : our star
- 1.2. The chemical composition of the sun and stars
- 1.3. The structure of stars
- 1.4. Stellar evolution in a nutshell
- 1.5. Summary
- 2. Observations of stellar parameters
- 2.1. The distance of stars
- 2.2. The mass of stars
- 2.3. The luminosity of stars
- 2.4. Magnitude, color, and temperature
- 2.5. The mass-luminosity relation
- 2.6. The Hertzsprung-Russell diagram and the color-magnitude diagram
- 2.7. Nomenclature of regions in the HRD and CMD
- 2.8. Summary
- 3. Hydrostatic equilibrium and its consequences
- 3.1. Conservation of mass : the mass continuity equation
- 3.2. Hydrostatic equilibrium
- 3.3. The virial theorem : a consequence of HE
- 3.4. Summary
- 4. Gas physics of stars
- 4.1. Mean particle mass
- 4.2. A general expression for the pressure
- 4.3. Radiation pressure
- 4.4. Pressure of an ideal gas
- 4.5. Electron Degeneracy
- 4.6. The equation of state (EoS) for electron gas
- 4.7. Neutron degeneracy
- 4.8. Polytropic gas
- 4.9. Summary
- 5. Opacities in stars
- 5.1. The Rosseland-mean opacity
- 5.2. Electron scattering : [sigma]e
- 5.3. Free-free absorption : [kappa]ff
- 5.4. Bound-freE absorption : [Kappa]BF
- 5.5. BOUND-bound absorption : [kappa]bb
- 5.6. Total Rosseland-mean opacity : [kappa]r
- 5.7. The mean-free path of photons : l
- 5.8. Summary
- 6. Radiative energy transport
- 6.1. Eddington's equation for radiative equilibrium
- 6.2. Mass-luminosity relation for stars in HE and RE
- 6.3. The Eddington limit : the maximum luminosity and the maximum mass
- 6.4. Summary
- 7. Convective energy transport
- 7.1. The Schwarzschild criterion for convection
- 7.2. Convection in a layer with a [mu]-gradient : Ledoux criterion
- 7.3. The mixing length : how far does a convective cell rise before it dissolves
- 7.4. The efficiency of convective energy transport
- 7.5. The convective velocity
- 7.6. Typical values of convective velocity and the timescale
- 7.7. The super-adiabatic temperature gradient in convection zones
- 7.8. Convective overshooting
- 7.9. Convection : where and why?
- 7.10. Chemical mixing by convection and its consequences
- 7.11. Summary
- 8. Nuclear fusion
- 8.1. Reaction rates and energy production
- 8.2. Thermonuclear reaction rates and the Gamow peak
- 8.3. Abundance changes
- 8.4. H[right arrow]He fusion
- 8.5. He[right arrow]C fusion : the triple-α process
- 8.6. C-fusion, O-fusion, and Ne-photodisintegration
- 8.7. Photodisintegration and the formation of heavy elements
- 8.8. Summary of major nuclear reactions in stars
- 8.9. Formation of heavy elements by neutron capture
- 8.10. The minimum core mass for igniting fusion reactions
- 8.11. Fusion phases of stars in the ([rho]c,Tc) plane
- 8.12. Summary
- 9. Stellar timescales
- 9.1. The dynamical timescale
- 9.2. The thermal timescale or Kelvin-Helmholtz timescale
- 9.3. The nuclear timescale
- 9.4. The convection timescale
- 9.5. Comparison of timescales
- 9.6. Summary
- 10. Calculating stellar evolution
- 10.1. Assumptions for computing stellar evolution
- 10.2. The equations of stellar structure
- 10.3. Boundary conditions
- 10.4. Solving the structure equations
- 10.5. Principles of stellar evolution calculations
- 10.6. Summary
- 11. Polytropic stars
- 11.1. The structure of polytropic stars : P = K[rho][gamma]
- 11.2. Stellar parameters of polytropic models
- 11.3. The mass-radius relation of polytropic stars
- 11.4. Summary
- 12. Star formation
- 12.1. The interstellar medium
- 12.2. The Jeans mass for gravitational contraction
- 12.3. The collapse of molecular clouds
- 12.4. Fragmentation of molecular clouds
- 12.5. The minimum mass of stars
- 12.6. The end of the free-fall phase
- 12.7. The contraction of a convective protostar : the descent along the Hayashi track
- 12.8. The contraction of a radiative pre-main- sequence star : from the Hayashi track to the main sequence
- 12.9. T Tauri stars and Herbig Ae-Be stars
- 12.10. The destruction of lithium and deuterium
- 12.11. Stars that do not reach H-fusion : brown dwarfs with M < 0.08 M[sun]
- 12.12. The stellar initial mass function
- 12.13. Star formation in the early universe
- 12.14. Summary
- 13. H-fusion in the core : the main-sequence phase
- 13.1. The zero-age main sequence (ZAMS) : homology relations
- 13.2. The influence of abundances on the ZAMS
- 13.3. Evolution during the main-sequence phase
- 13.4. The end of the MS phase : the TAMS
- 13.5. The MS Lifetime
- 13.6. Summary
- 14. Principles of post-main-sequence evolution
- 14.1. Isothermal cores : the Schönberg-Chandrasekhar limit
- 14.2. The mirror principle of stars with shell fusion
- 14.3. The Hayashi line of fully convective stars
- 14.4. Summary
- 15. Stellar winds and mass loss
- 15.1. Types of winds
- 15.2. Line-driven winds of hot stars
- 15.3. Dust-driven winds of cool stars
- 15.4. Mass-loss formulae for stellar evolution
- 15.5. Summary
- 16. Shell H-fusion in low- and intermediate-mass stars : red giants
- 16.1. The start of the H-shell fusion
- 16.2. The H-shell fusion phase of low-mass stars of 0.8-2M[sun]
- 16.3. The H-shell fusion phase of intermediate-mass stars of 2-8 M[sun]
- 16.4. The Mcore-L relation for red giants
- 16.5. Metallicity dependence of the red giant branch
- 16.6. Mass loss during the red giant phase
- 16.7. Summary
- 17. Helium fusion in low-mass stars : horizontal branch stars
- 17.1. The ignition of helium fusion in low-mass stars
- 17.2. Helium fusion in the core : horizontal branch stars
- 17.3. Evolution on the horizontal branch
- 17.4. The observed HB of globular clusters
- 17.5. Summary
- 18. Double shell fusion : asymptotic giant branch stars
- 18.1. The start of the AGB phase
- 18.2. The Mcore-L relation of AGB stars
- 18.3. The second dredge-up at the beginning of the AGB phase
- 18.4. The thermal pulsing AGB phase (TP-AGB)
- 18.5. The third dredge-up
- 18.6. Summary of the dredge-up phases
- 18.7. The evolution speed during the AGB phase
- 18.8. Mass loss and the end of the AGB evolution
- 18.9. Summary
- 19. Post-AGB evolution and planetary nebulae
- 19.1. The post-AGB phase
- 19.2. Born-again AGB stars
- 19.3. Planetary nebulae
- 19.4. Fading to the white dwarf phase
- 19.5. Summary
- 20. White dwarfs and neutron stars
- 20.1. Stars that become white dwarfs
- 20.2. The structure of white dwarfs
- 20.3. The Chandrasekhar mass limit for white dwarfs
- 20.4. The cooling of white dwarfs
- 20.5. Neutron stars
- 20.6. Summary
- 21. Pulsating stars
- 21.1. Classical Radial Pulsators
- 21.2. Pulsation periods of classical radial pulsators
- 21.3. The [kappa]-mechanism of classical radial pulsators
- 21.4. An example : the pulsation of [delta] Cephei
- 21.5. Nonradial pulsations and asteroseismology
- 21.6. Summary
- 22. Observations of massive stars : evidence for evolution with mass loss
- 22.1. The observed upper limit in the HRD
- 22.2. The atmospheric Eddington limit
- 22.3. Luminous blue variables and the atmospheric Eddington limit
- 22.4. Wolf-Rayet stars
- 22.5. The dependence of massive star evolution on metallicity
- 22.6. Summary
- 23. Evolution of massive stars of 8-25M[sun]
- 23.1. Predicted evolutionary tracks
- 23.2. The internal evolution during the post-MS phase of stars of 8 to 25M[sun]
- 23.3. Stellar pulsation during blue loops
- 23.4. Summary
- 24. The evolution of massive stars of 25-120M[sun] : dominated by mass loss
- 24.1. The effect of mass loss during the main-sequence phase
- 24.2. Predicted evolution tracks with mass loss
- 24.3. The evolution of a 60M[sun] star with mass loss
- 24.4. The Conti scenario
- 24.5. Summary
- 25. Rotation and stellar evolution
- 25.1. The critical velocity of rotating stars
- 25.2. The Von Zeipel effect
- 25.3. nonspherical mass loss of rapidly rotating stars
- 25.4. Mixing by meridional circulation
- 25.5. The effect of rotation on the evolution of massive stars
- 25.6. Homogeneous evolution
- 25.7. Summary
- 26. Late evolution stages of massive stars
- 26.1. Late fusion phases
- 26.2. The internal evolution
- 26.3. Pre-supernovae
- 26.4. Summary
- 27. Supernovae
- 27.1. Light curves of supernovae
- 27.2. Core collapse
- 27.3. The core collapse supernova explosion
- 27.4. Energetics of core collapse supernovae of massive stars
- 27.5. Observed types of supernovae
- 27.6. The case of Supernova 1987A
- 27.7. The remnants of stellar evolution
- 27.8. Summary
- 28. Principles of close binary evolution
- 28.1. Periods and angular momentum
- 28.2. Equipotential surfaces of binaries
- 28.3. Contact phases
- 28.4. Changes in period and separation during mass transfer
- 28.5. Stable and runaway mass transfer
- 28.6. Summary
- 29. Close binaries : examples of evolution with mass transfer
- 29.1. Algol systems : conservative case A mass transfer
- 29.2. Massive interacting binaries : conservative case B mass transfer
- 29.3. Common envelope stars : case C mass transfer
- 29.4. The formation of high-mass X-ray binaries
- 29.5. The formation of low-mass X-ray binaries
- 29.6. Novae : WDs in semi-detached systems
- 29.7. Summary
- 30. Chemical yields : products of stellar evolution
- 30.1. A summary of the evolution of single stars
- 30.2. Chemical yields of single stars
- 30.3. The main producers of various elements
- 30.4. Summary
- Appendices. A. Physical and astronomical constants
- B. Stellar parameters
- C. Solar model
- D. Main sequence from ZAMS to TAMS
- E. Acronyms.