Discharge in long air gaps : modelling and applications /
Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning f...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2016]
|
Colección: | IOP (Series). Release 2.
IOP expanding physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- 1. Introduction
- 1.1. Research into and interest in the long air gap discharge
- 1.2. Scope and objectives
- 1.3. Intended audience
- 2. The background of air gap discharge theory
- 2.1. Introduction
- 2.2. Ionization phenomena
- 2.3. Cross section and mean free path--elastic collisions
- 2.4. Mobility, diffusion, and recombination
- 2.5. Discharge in small air gaps : Townsend's discharge theory
- 2.6. Self-sustaining discharge
- 2.7. Limits of Townsend's theory
- 2.8. Streamer-leader theory
- 3. The positive discharge in long air gaps
- 3.1. Introduction
- 3.2. Air gap breakdown process under an impulse voltage
- 4. The negative discharge in long air gaps
- 4.1. Introduction
- 4.2. First negative corona and stem
- 4.3. The cathodic stem and upward discharges
- 4.4. The negative leader
- 4.5. The space stem or pilot system
- 4.6. Final jump phase
- 5. Lightning discharge
- 5.1. Introduction
- 5.2. The global electric circuit
- 5.3. The most common types of lightning discharge
- 5.4. A description of a cloud-ground lightning discharge processes
- 5.5. Lightning electrical parameters
- 5.6. Comparison of laboratory sparks and cloud-ground lightning discharges
- 6. A review of existing mathematical models developed for long air gap discharges
- 6.1. Introduction
- 6.2. Positive discharge models
- 6.3. Negative discharge models
- 6.4. Fractal models of long discharges
- 7. Modelling the positive discharge in long air gaps
- 7.1. Introduction
- 7.2. A general description of the dynamic procedure
- 7.3. The applied voltage wave shape
- 7.4. The characterization of the discharge propagation
- 7.5. Distributed-circuit-based modelling
- 7.6. The distributed-circuit elements
- 7.7. General flowchart of the model
- 7.8. Extension to a very long air gap : positive lightning
- 8. Modelling the negative discharge in long air gaps
- 8.1. Introduction
- 8.2. The development of a negative discharge
- 8.3. Theoretical background
- 8.4. Distributed-circuit-based modelling
- 8.5. General description of computation steps
- 8.6. Extension to a very long air gap : negative lightning
- 9. Applications of the model developed for positive discharge in long air gaps
- 9.1. Introduction
- 9.2. Prediction of the characteristics of long air gap discharges : simulations of some laboratory experiments
- 9.3. Prediction of the switching impulse withstand voltages of long air gaps
- 9.4. Flashover voltage of long air gaps in the presence of a floating insulating barrier
- 10. Applications of the model developed for negative discharge in long air gaps
- 10.1. Introduction
- 10.2. Simulation of laboratory experiments
- 10.3. Prediction of the 50% negative breakdown voltage
- 11. Application of the model to positive lightning discharge
- 11.1. Introduction
- 11.2. Prediction of positive lightning discharge parameters
- 11.3. Influence of soil conductivity and cloud-ground distance on the positive lightning impulse current
- 11.4. Electric field changes of the leader and return stroke
- 11.5. Magnetic field associated with the leader
- 12. Application of the model to the process of lightning-ground connection and quantification of the striking distance
- 12.1. Introduction
- 12.2. Modelling the lightning connection process to a ground structure
- 12.3. A quantitative study of lightning striking distance factors
- 13. Application of the model to evaluate the induced effects on overhead lines due to a nearby positive lightning downward leader
- 13.1. Introduction
- 13.2. Induced effects on an overhead line due to nearby positive lightning downward leader
- 14. Negative lightning model--applications
- 14.1. Introduction
- 14.2. The prediction of negative lightning discharge parameters
- 14.3. Electric and magnetic fields associated with the leader.