Cargando…

Discharge in long air gaps : modelling and applications /

Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Beroual, A. (Abderrahmane) (Autor), Fofana, I. (Issouf) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2016]
Colección:IOP (Series). Release 2.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750312363
003 IOP
005 20160707223436.0
006 m eo d
007 cr cn |||m|||a
008 160605s2016 enka ob 000 0 eng d
020 |a 9780750312363  |q ebook 
020 |a 9780750312387  |q mobi 
020 |z 9780750312370  |q print 
024 7 |a 10.1088/978-0-7503-1236-3  |2 doi 
035 |a (CaBNVSL)thg00971272 
035 |a (OCoLC)953228826 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a QC966  |b .B474 2016eb 
072 7 |a PHK  |2 bicssc 
072 7 |a SCI021000  |2 bisacsh 
082 0 4 |a 551.56/32  |2 23 
100 1 |a Beroual, A.  |q (Abderrahmane),  |e author. 
245 1 0 |a Discharge in long air gaps :  |b modelling and applications /  |c A. Beroual and I. Fofana. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2016] 
300 |a 1 online resource (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a [IOP release 2] 
490 1 |a IOP expanding physics,  |x 2053-2563 
500 |a "Version: 20160601"--Title page verso. 
504 |a Includes bibliographical references. 
505 0 |a Preface -- 1. Introduction -- 1.1. Research into and interest in the long air gap discharge -- 1.2. Scope and objectives -- 1.3. Intended audience 
505 8 |a 2. The background of air gap discharge theory -- 2.1. Introduction -- 2.2. Ionization phenomena -- 2.3. Cross section and mean free path--elastic collisions -- 2.4. Mobility, diffusion, and recombination -- 2.5. Discharge in small air gaps : Townsend's discharge theory -- 2.6. Self-sustaining discharge -- 2.7. Limits of Townsend's theory -- 2.8. Streamer-leader theory 
505 8 |a 3. The positive discharge in long air gaps -- 3.1. Introduction -- 3.2. Air gap breakdown process under an impulse voltage 
505 8 |a 4. The negative discharge in long air gaps -- 4.1. Introduction -- 4.2. First negative corona and stem -- 4.3. The cathodic stem and upward discharges -- 4.4. The negative leader -- 4.5. The space stem or pilot system -- 4.6. Final jump phase 
505 8 |a 5. Lightning discharge -- 5.1. Introduction -- 5.2. The global electric circuit -- 5.3. The most common types of lightning discharge -- 5.4. A description of a cloud-ground lightning discharge processes -- 5.5. Lightning electrical parameters -- 5.6. Comparison of laboratory sparks and cloud-ground lightning discharges 
505 8 |a 6. A review of existing mathematical models developed for long air gap discharges -- 6.1. Introduction -- 6.2. Positive discharge models -- 6.3. Negative discharge models -- 6.4. Fractal models of long discharges 
505 8 |a 7. Modelling the positive discharge in long air gaps -- 7.1. Introduction -- 7.2. A general description of the dynamic procedure -- 7.3. The applied voltage wave shape -- 7.4. The characterization of the discharge propagation -- 7.5. Distributed-circuit-based modelling -- 7.6. The distributed-circuit elements -- 7.7. General flowchart of the model -- 7.8. Extension to a very long air gap : positive lightning 
505 8 |a 8. Modelling the negative discharge in long air gaps -- 8.1. Introduction -- 8.2. The development of a negative discharge -- 8.3. Theoretical background -- 8.4. Distributed-circuit-based modelling -- 8.5. General description of computation steps -- 8.6. Extension to a very long air gap : negative lightning 
505 8 |a 9. Applications of the model developed for positive discharge in long air gaps -- 9.1. Introduction -- 9.2. Prediction of the characteristics of long air gap discharges : simulations of some laboratory experiments -- 9.3. Prediction of the switching impulse withstand voltages of long air gaps -- 9.4. Flashover voltage of long air gaps in the presence of a floating insulating barrier 
505 8 |a 10. Applications of the model developed for negative discharge in long air gaps -- 10.1. Introduction -- 10.2. Simulation of laboratory experiments -- 10.3. Prediction of the 50% negative breakdown voltage 
505 8 |a 11. Application of the model to positive lightning discharge -- 11.1. Introduction -- 11.2. Prediction of positive lightning discharge parameters -- 11.3. Influence of soil conductivity and cloud-ground distance on the positive lightning impulse current -- 11.4. Electric field changes of the leader and return stroke -- 11.5. Magnetic field associated with the leader 
505 8 |a 12. Application of the model to the process of lightning-ground connection and quantification of the striking distance -- 12.1. Introduction -- 12.2. Modelling the lightning connection process to a ground structure -- 12.3. A quantitative study of lightning striking distance factors 
505 8 |a 13. Application of the model to evaluate the induced effects on overhead lines due to a nearby positive lightning downward leader -- 13.1. Introduction -- 13.2. Induced effects on an overhead line due to nearby positive lightning downward leader 
505 8 |a 14. Negative lightning model--applications -- 14.1. Introduction -- 14.2. The prediction of negative lightning discharge parameters -- 14.3. Electric and magnetic fields associated with the leader. 
520 3 |a Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Macroscopic air gap discharge parameters are calculated to solve electrical, empirical and physical equations, and comparisons between computed and experimental results for various test configurations are presented and discussed. This book is intended to provide a fresh perspective by contributing an innovative approach to this research domain, and universities with programs in high-voltage engineering will find this volume to be a working example of how to introduce the basics of electric discharge phenomena. 
521 |a Graduate and post-graduate students, engineers working on power transmission and distribution, engineers working on protection of systems/structures against over-voltages and lightning strikes. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat Reader. 
545 |a Abderrahmane Beroual is a distinguished full Professor at University of Lyon in the Ecole Centrale de Lyon, France. His research has made a substantial contribution to long air gaps discharge and lightning, outdoor insulation, modelling of discharges and composite materials, pre-breakdown and breakdown phenomena in dielectric fluids and solid/fluid interfaces. He was elected IEEE fellow in 2011 for his contribution to processes of pre-breakdown and breakdown in dielectric liquids. Issouf Fofana is chair professor at the Université du Québec à Chicoutimi (UQAC) and Director of the Modeling and Diagnostic of Power Network Equipment (MODELE) laboratory. He is actively involved with teaching and research in the area of high-voltage engineering with emphases on the insulation diagnostic/modelling relevant to power equipment. 
588 |a Title from PDF title page (viewed on July 5, 2016). 
650 0 |a Lightning  |x Computer simulation. 
650 0 |a Electric discharges  |x Computer simulation. 
650 7 |a Electricity, electromagnetism & magnetism.  |2 bicssc 
650 7 |a SCIENCE / Physics / Electricity.  |2 bisacsh 
700 1 |a Fofana, I.  |q (Issouf),  |e author. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750312370 
830 0 |a IOP (Series).  |p Release 2. 
830 0 |a IOP expanding physics. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-1236-3  |z Texto completo