Advanced digital imaging laboratory using MATLAB(R) /
The first edition of this text book focussed on providing practical hands-on experience in digital imaging techniques for graduate students and practitioners keeping to a minimum any detailed discussion on the underlying theory. In this new extended edition, the author builds on the strength of the...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2016]
|
Edición: | Second edition. |
Colección: | IOP (Series). Release 3.
IOP expanding physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface to the second edition
- Preface
- 1. Introduction
- 1.1. General remarks about the book
- 1.2. Instructions for readers
- 2. Image digitization
- 2.1. Introduction
- 2.2. Image discretization
- 2.3. Signal scalar quantization
- 2.4. Image compression
- 3. Digital image formation and computational imaging
- 3.1. Introduction
- 3.2. Image recovery from sparse irregularly sampled data. Recovery of images with occlusions
- 3.3. Numerical reconstruction of holograms
- 3.4. Image reconstruction from projections
- 4. Image resampling and building continuous image models
- 4.1. Introduction
- 4.2. Signal/image sub-sampling through fractional shifts
- 4.3. Comparison of DFT-based and DCT-based discrete sinc interpolations
- 4.4. Image resampling using 'continuous' image models
- 4.5. Three step image rotation algorithm
- 4.6. Comparison of image resampling methods
- 4.7. Comparison of signal numerical differentiation and integration methods
- 5. Image and noise statistical characterization and diagnostics
- 5.1. Introduction
- 5.2. Image histograms
- 5.3. Image local moments and order statistics
- 5.4. Pixel attributes and neighborhoods
- 5.5. Image autocorrelation functions and power spectra
- 5.6. Image noise
- 5.7. Empirical diagnostics of image noise
- 6. Statistical image models and pattern formation
- 6.1. Introduction
- 6.2. PWN models
- 6.3. LF models
- 6.4. PWN&LF and LF&PWN models
- 6.5. Evolutionary models
- 7. Image correlators for detection and localization of objects
- 7.1. Introduction
- 7.2. Localization of a target on images contaminated with additive uncorrelated Gaussian noise. Normal and anomalous localization errors
- 7.3. Normal and anomalous localization errors
- 7.4. Matched filter correlator versus signal-to-clutter ratio-optimal correlator. Local versus global signal-to-clutter ratio-optimal correlators
- 7.5. Object localization and image edges
- 8. Methods of image perfecting
- 8.1. Introduction
- 8.2. Correcting imaging system transfer functions
- 8.3. Filtering periodical interferences. Filtering 'banding' noise
- 8.4. Filtering 'banding' noise
- 8.5. 'Ideal' and empirical Wiener filtering for image denoising and deblurring
- 8.6. Local adaptive filtering for image denoising : achromatic images
- 8.7. Local adaptive filtering for image denoising : color images
- 8.8. Filtering impulsive noise using linear filters
- 8.9. Image denoising using nonlinear (rank) filters
- 9. Methods of image enhancement
- 9.1. Introduction
- 9.2. Enhancement of achromatic images
- 9.3. Enhancement of color images.