Cargando…

Green nanomaterials : from bioinspired synthesis to sustainable manufacturing of inorganic nanomaterials /

This book covers emerging bioinspired green methods for preparing inorganic nanomaterials. The book starts with an introduction to the principles of green chemistry and engineering, and highlights the special properties that nanomaterials possess, their applications and ways to characterise them. It...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Patwardhan, Siddharth V. (Autor), Staniland, Sarah S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
Colección:IOP ebooks. 2020 collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • section I. Green chemistry principles. 1. Green chemistry and engineering
  • 1.1. Principles of green chemistry and engineering
  • 1.2. Ways to improve sustainability
  • 1.3. Green chemistry and nanomaterials
  • section II. Nanomaterials. 2. Nanomaterials : what are they and why do we want them?
  • 2.1. Fundamentals of the nanoscale
  • 2.2. Tangible and historical examples of nanomaterials
  • 2.3. Special properties offered by the nanoscale
  • 2.4. Applications
  • 2.5. Nanomaterial biocompatibility and toxicity
  • 2.6. Summary : key lessons from nanomaterials, nanoproperties and applications
  • 3. Characterisation of nanomaterials
  • 3.1. Introduction
  • 3.2. Microscopy
  • 3.3. Spectroscopy applied to nanomaterials
  • 3.4. Diffraction and scattering techniques
  • 3.5. Porosimetry
  • 3.6. Summary : key lessons for characterisation of nanomaterials
  • 4. Conventional methods to prepare nanomaterials
  • 4.1. Top-down and bottom-up methods
  • 4.2. Top-down methods
  • 4.3. Bottom-up methods
  • 4.4. Nucleation and growth theory
  • 4.5. Conventional bottom-up methods
  • 4.6. Emerging bottom-up methods
  • 4.7. Summary : key lessons about conventional routes to nanomaterials
  • section III. From biominerals to green nanomaterials. 5. Green chemistry for nanomaterials
  • 5.1. Sustainability of nanomaterials production
  • 5.2. Reasons behind unsustainability
  • 5.3. Evaluation of sustainability for selected methods
  • 5.4. Adopting green chemistry for nanomaterials
  • 5.5. Biological and biochemical terminology and methods
  • 5.6. Summary : key lessons about sustainability nanomaterials production
  • 6. Biomineralisation : how Nature makes nanomaterials
  • 6.1. Introduction
  • 6.2. Properties and function of biomineral types
  • 6.3. Mineral formation controlling strategies in biomineralisation
  • 6.4. Roles and types of organic biological components required for biomineralisation
  • 6.5. Summary : key lessons from biomineralisation for the green synthesis of nanomaterials
  • 7. Bioinspired 'green' synthesis of nanomaterials
  • 7.1. From biological to bioinspired synthesis
  • 7.2. Mechanistic understanding
  • 7.3. An illustration of exploiting the knowledge of nano-bio interactions
  • 7.4. Additives as the mimics of biomineral forming biomolecules
  • 7.5. Compartmentalisation, templating and patterning
  • 7.6. Scalability of bioinspired syntheses
  • 7.7. Summary : key lessons about the journey towards bioinspired synthesis
  • section IV. Case studies. 8. Case study 1 : magnetite nanoparticles
  • 8.1. Magnetite biomineralisation in magnetotactic bacteria
  • 8.2. Magnetosome use in applications : advantages and drawbacks
  • 8.3. Biomolecules and components controlling magnetosome formation
  • 8.4. Biokleptic use of Mms proteins for magnetite synthesis in vitro
  • 8.5. Understanding Mms proteins in vitro
  • 8.6. Development and design of additives : emergence of bioinspired magnetite nanoparticle synthesis
  • 8.7. Summary : key learning, and the future (towards manufacture)
  • 9. Case study 2 : silica
  • 9.1. Biosilica occurrence and formation
  • 9.2. Biomolecules controlling biosilica formation
  • 9.3. Learning from biological silica synthesis : in vitro investigation of bioextracts
  • 9.4. Emergence of bioinspired synthesis using synthetic 'additives'
  • 9.5. Benefits of bioinspired synthesis
  • 9.6. From lab to market
  • 9.7. Summary : key learning, summary and the future.