Quantum mechanics /
Quantum mechanics is one of the most brilliant and exciting theories of the 20th century. It has not only explained a wide range of phenomena but has brought revolutionary changes in the conceptual foundations of physics and continues to shape the modern world. As quantum mechanics involves the intr...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2015]
|
Colección: | IOP (Series). Release 2.
IOP expanding physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Author biography
- 1. The failure of classical physics and the advent of quantum mechanics
- 1.1. A challenge for classical physics
- 1.2. The photoelectric effect
- 1.3. The Compton effect
- 1.4. Heisenberg's uncertainty principle
- 1.5. The correspondence principle
- 1.6. The Schrödinger wave equation
- 1.7. Constraints on solutions
- 1.8. Eigenfunctions and eigenvalues
- 1.9. The principle of superposition
- 1.10. Complementarity
- 1.11. Schrödinger's amplitude equation
- 1.12. The orthonormal set of functions
- 1.13. The equation of continuity
- 1.14. Complete sets of functions
- 1.15. The quantum theory of measurement
- 1.16. Observables and expectation values
- 1.17. Phases and relative phases
- 1.18. Postulates of quantum mechanics
- 1.19. The Schrödinger wave equation under space reflection, space inversion and time reversal
- 1.20. Concluding remarks
- 2. A particle in a one-dimensional box
- 2.1. Introduction
- 2.2. The solution of Schrödinger's amplitude equation
- 2.3. Zero-point energy
- 2.4. The normalisation constant
- 2.5. The parity of eigenfunctions
- 3. Free particles
- 3.1. Introduction
- 3.2. Free particles
- 3.3. Normalisation of stationary wave solutions
- 3.4. Normalisation of progressive wave solutions
- 3.5. Dirac's delta function
- 3.6. Continuous distribution of eigenvalues and Dirac's delta function
- 3.7. Eigenfunctions and eigenvalues of the position operator
- 3.8. Eigenfunctions and eigenvalues of the momentum operator
- 3.9. Normalisation of a free particle eigenfunction using a delta function
- 4. Linear harmonic oscillator
- 4.1. Classical theory
- 4.2. Quantum theory
- 4.3. The asymptotic solution
- 4.4. The general solution
- 4.5. A physically acceptable solution
- 4.6. Energy eigenvalues
- 4.7. Hermite polynomials
- 4.8. The normalisation process
- 4.9. Probability distributions
- 4.10. The importance of the harmonic oscillator
- 4.11. Parity
- 5. The role of Hermitian operators
- 5.1. Linear operators
- 5.2. Hermitian operators
- 5.3. The closure relation
- 5.4. Constants of motion
- 5.5. The classical limit of quantum mechanics : the Ehrenfest theorem
- 5.6. The virial theorem
- 5.7. Heisenberg's uncertainty principle
- 5.8. The parity operator
- 5.9. Antilinear operators
- 5.10. Antiunitary operators
- 6. Potentials with finite discontinuities
- 6.1. Potential steps
- 6.2. The potential barrier
- 6.3. [alpha]-particle decay
- 6.4. The square-well potential
- 7. Spherically symmetric potentials
- 7.1. Introduction
- 7.2. Spherically symmetric potentials
- 7.3. Separation of variables
- 7.4. Solution of the differential equation for F([phi])
- 7.5. Solution of the differential equation for P([theta])
- 7.6. Legendre polynomials and associated Legendre functions
- 7.7. Spherical harmonics
- 7.8. Hydrogen and hydrogenic atoms
- 7.9. The solution of the radial equation
- 7.10. Physically acceptable solutions for the radial equation and discrete energy values
- 7.11. The parity of a particle in a spherically symmetric potential
- 7.12. Comparison of the spectral series of hydrogen atom with experiments
- 7.13. The radial wave function
- 7.14. The spectroscopic notation
- 7.15. The normalised solution for the hydrogenic atom
- 7.16. Stationary states
- 8. Matrix mechanics
- 8.1. Matrix representation of an operator
- 8.2. Change of basis and unitary transformation
- 8.3. Coordinate and momentum representations
- 8.4. Continuous distribution of eigenvalues
- 9. Angular momentum
- 9.1. Angular momentum operator
- 9.2. Commutators of various components of L
- 9.3. Commutator of L2 and Lz
- 9.4. Components of the orbital angular momentum operator in spherical polar coordinates
- 9.5. L2 in spherical polar coordinates
- 9.6. Eigenfunctions and eigenvalues of Lz
- 9.7. Eigenvalues of Lz and L2 corresponding to their simultaneous eigenfunctions and ladder operators
- 9.8. Normal Zeeman effect
- 9.9. General theory of angular momentum
- 9.10. Characteristics of ladder operators
- 9.11. Electron spin
- 9.12. Matrix representations of Sx, Sy, Sz
- 9.13. Eigenvectors of Sz
- 9.14. The wave function for the electron
- 9.15. Spins of elementary particles
- 9.16. The average value of spin
- 9.17. Spin and statistics
- 9.18. Addition of angular momenta
- 9.19. Clebsch-Gordan coefficients
- 10. Perturbation theory
- 10.1. Introduction
- 10.2. Time-independent perturbation theory for nondegenerate states
- 10.3. First-order correction to energy
- 10.4. The anomalous Zeeman effect
- 10.5. The first-order correction to the eigenfunction
- 10.6. Second-order non-degenerate perturbation
- 10.7. The second-order correction to energy
- 10.8. The second-order correction to the eigenfunction
- 10.9. First-order perturbation : energy correction in a two-fold degenerate case
- 10.10. The application of perturbation theory to the Stark effect
- 10.11. Time-dependent perturbation theory
- 10.12. Harmonic perturbation
- 10.13. Fermi's golden rule
- 11. Theory of elastic scattering
- 11.1. Introduction
- 11.2. Centre-of-mass and laboratory frames of reference
- 11.3. The effect of collision on the velocity of the centre-of-mass in the laboratory frame
- 11.4. Relation between scattering angles in the laboratory and centre-of-mass frames
- 11.5. Relation between differential cross sections in the laboratory and centre-of-mass frames
- 11.6. Scattering by a stationary target
- 11.7. Relation between the scattering amplitude and differential cross section
- 11.8. Computation of the scattering amplitude
- 11.9. The Born approximation
- 11.10. Scattering of high energy electrons by a screened Coulomb potential
- 11.11. Partial wave analysis
- 11.12. The incident particle wave in terms of partial waves
- 11.13. Phase shift and scattering
- 11.14. A general solution in terms of partial waves
- 11.15. Optical theorem
- 11.16. Scattering by a hard sphere
- 11.17. Scattering from a potential square well
- 11.18. s-wave scattering for a square-well potential
- 11.19. Resonance scattering
- 11.20. Zero-energy scattering and the scattering length
- 11.21. Identical particles
- 12. Dirac's formalism
- 12.1. Introduction
- 12.2. Unitary operators
- 12.3. Unitary transformation
- 12.4. A particular unitary operator
- 12.5 Representations and change of basis
- 12.6. A one-dimensional oscillator
- 12.7. The relation between state vectors and wave functions
- 12.8. A free particle.