Quantum statistical mechanics : equilibrium and non-equilibrium theory from first principles /
This book establishes the foundations of non-equilibrium quantum statistical mechanics in order to support students and academics in developing and building their understanding. The formal theory is derived from first principles by mathematical analysis, with concrete physical interpretations and wo...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2015]
|
Colección: | IOP (Series). Release 2.
IOP expanding physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Author biography
- 1 Probability operator and statistical averages
- 1.1 Expectation, density operator and averages
- 1.2 Uniform weight density of wave space
- 1.3 Canonical equilibrium system
- 1.4 Environmental selection
- 1.5 Wave function collapse and the classical universe
- 2 Examples and applications : equilibrium
- 2.1 Bosons, fermions and wave function symmetry
- 2.2 Ideal quantum gas
- 2.3 State occupancy by ideal particles
- 2.4 Thermodynamics and statistical mechanics of ideal particles
- 2.5 Classical ideal gas
- 2.6 Ideal Bose gas
- 2.7 Ideal Fermi gas
- 2.8 Simple harmonic oscillator
- 3 Probability in quantum systems
- 3.1 Formulation of probability
- 3.2 Transitions
- 3.3 Non-equilibrium probability
- 4 Time propagator for an open quantum system
- 4.1 Adiabatic time propagator
- 4.2 Stochastic time propagator
- 4.3 Kraus representation and Lindblad equation
- 4.4 Caldeira-Leggett model
- 4.5 Time correlation function
- 4.6 Transition probability
- 4.7 Microscopic reversibility
- 5 Evolution of the canonical equilibrium system
- 5.1 Transitions between entropy states
- 5.2 Second entropy for transitions
- 5.3 Trajectory in wave space
- 5.4 Time derivative of entropy operator
- 6 Probability operator for non-equilibrium systems
- 6.1 Entropy operator for a trajectory
- 6.2 Point entropy operator
- 6.3 Non-equilibrium probability operator
- 6.4 Approximations for the dynamic entropy operator
- 6.5 Perturbation of the non-equilibrium probability operator
- 6.6 Linear response theory
- Appendices.
- A. Probability densities and the statistical average
- B. Stochastic state transitions for a non-equilibrium system
- C. Entropy eigenfunctions, state transitions, and phase space.