Extreme-temperature and harsh-environment electronics : physics, technology and applications /
Electronic devices and circuits are employed by a range of industries in testing conditions from extremes of high- or low-temperature, in chemically corrosive environments, subject to shock and vibration or exposure to radiation. This book describes the diverse measures necessary to make electronics...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2017]
|
Colección: | IOP (Series). Release 3.
IOP expanding physics. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- 1. Introduction and overview
- 1.1. Reasons for moving away from normal practices in electronics
- 1.2. Organization of the book
- 1.3. Temperature effects
- 1.4. Harsh environment effects
- 1.5. Discussion and conclusions
- 2. Operating electronics beyond conventional limits
- 2.1. Life-threatening temperature imbalances on Earth and other planets
- 2.2. Temperature disproportions for electronics
- 2.3. High-temperature electronics
- 2.4. Low-temperature electronics
- 2.5. The scope of extreme-temperature and harsh-environment electronics
- 2.6. Discussion and conclusions
- part I. Extreme-temperature electronics
- 3. Temperature effects on semiconductors
- 3.1. Introduction
- 3.2. The energy bandgap
- 3.3. Intrinsic carrier concentration
- 3.4. Carrier saturation velocity
- 3.5. Electrical conductivity of semiconductors
- 3.6. Free carrier concentration in semiconductors
- 3.7. Incomplete ionization and carrier freeze-out
- 3.8. Different ionization regimes
- 3.9. Mobilities of charge carriers in semiconductors
- 3.10. Equations for mobility variation with temperature
- 3.11. Mobility in MOSFET inversion layers at low temperatures
- 3.12. Carrier lifetime
- 3.13. Wider bandgap semiconductors than silicon
- 3.14. Discussion and conclusions
- 4. Temperature dependence of the electrical characteristics of silicon bipolar devices and circuits
- 4.1. Properties of silicon
- 4.2. Intrinsic temperature of silicon
- 4.3. Recapitulating single-crystal silicon wafer technology
- 4.4. Examining temperature effects on bipolar devices
- 4.5. Bipolar analog circuits in the 25°C to 300°C range
- 4.6. Bipolar digital circuits in the 25°C to 340°C range
- 4.7. Discussion and conclusions
- 5. Temperature dependence of electrical characteristics of silicon MOS devices and circuits
- 5.1. Introduction
- 5.2. Threshold voltage of an n-channel enhancement mode MOSFET
- 5.3. On-resistance (RDS(ON)) of a double-diffused vertical MOSFET
- 5.4. Transconductance (gm) of a MOSFET
- 5.5. BVDSS and IDSS of a MOSFET
- 5.6. Zero temperature coefficient biasing point of MOSFET
- 5.7. Dynamic response of a MOSFET
- 5.8. MOS analog circuits in the 25°C to 300°C range
- 5.9. Digital CMOS circuits in -196°C to 270°C range
- 5.10. Discussion and conclusions
- 6. The influence of temperature on the performance of silicon-germanium heterojunction bipolar transistors
- 6.1. Introduction
- 6.2. HBT fabrication
- 6.3. Current gain and forward transit time of Si/Si1-xGex HBT
- 6.4. Comparison between Si BJT and Si/SiGe HBT
- 6.5. Discussion and conclusions
- 7. The temperature-sustaining capability of gallium arsenide electronics
- 7.1. Introduction
- 7.2. The intrinsic temperature of GaAs
- 7.3. Growth of single-crystal gallium arsenide
- 7.4. Doping of GaAs
- 7.5. Ohmic contacts to GaAs
- 7.6. Schottky contacts to GaAs
- 7.7. Commercial GaAs device evaluation in the 25°C to 400°C temperature range
- 7.8. Structural innovations for restricting the leakage current of GaAs MESFET up to 300°C
- 7.9. Won et al threshold voltage model for a GaAs MESFET
- 7.10. The high-temperature electronic technique for enhancing the performance of MESFETs up to 300°C
- 7.11. The operation of GaAs complementary heterojunction FETs from 25°C to 500°C
- 7.12. GaAs bipolar transistor operation up to 400°C
- 7.13. A GaAs-based HBT for applications up to 350°C
- 7.14. AlxGaAs1-x/GaAs HBT
- 7.15. Discussion and conclusions
- 8. Silicon carbide electronics for hot environments
- 8.1. Introduction
- 8.2. Intrinsic temperature of silicon carbide
- 8.3. Silicon carbide single-crystal growth
- 8.4. Doping of silicon carbide
- 8.5. Surface oxidation of silicon dioxide
- 8.6. Schottky and ohmic contacts to silicon carbide
- 8.7. SiC p-n diodes
- 8.8. SiC Schottky-barrier diodes
- 8.9. SiC JFETs
- 8.10. SiC bipolar junction transistors
- 8.11. SiC MOSFETs
- 8.12. Discussion and conclusions
- 9. Gallium nitride electronics for very hot environments
- 9.1. Introduction
- 9.2. Intrinsic temperature of gallium nitride
- 9.3. Growth of the GaN epitaxial layer
- 9.4. Doping of GaN
- 9.5. Ohmic contacts to GaN
- 9.6. Schottky contacts to GaN
- 9.7. GaN MESFET model with hyperbolic tangent function
- 9.8. AlGaN/GaN HEMTs
- 9.9. InAlN/GaN HEMTs
- 9.10. Discussion and conclusions
- 10. Diamond electronics for ultra-hot environments
- 10.1. Introduction
- 10.2. Intrinsic temperature of diamond
- 10.3. Synthesis of diamond
- 10.4. Doping of diamond
- 10.5. A diamond p-n junction diode
- 10.6. Diamond Schottky diode
- 10.7. Diamond BJT operating at <200°C
- 10.8. Diamond MESFET
- 10.9. Diamond JFET
- 10.10. Diamond MISFET
- 10.11. Discussion and conclusions
- 11. High-temperature passive components, interconnections and packaging
- 11.1. Introduction
- 11.2. High-temperature resistors
- 11.3. High-temperature capacitors
- 11.4. High-temperature magnetic cores and inductors
- 11.5. High-temperature metallization
- 11.6. High-temperature packaging
- 11.7. Discussion and conclusions
- 12. Superconductive electronics for ultra-cool environment
- 12.1. Introduction
- 12.2. Superconductivity basics
- 12.3. Josephson junction
- 12.4. Inverse AC Josephson effect : Shapiro steps
- 12.5. Superconducting quantum interference devices
- 12.6. Rapid single flux quantum logic
- 12.7. Discussion and conclusions
- 13. Superconductor-based microwave circuits operating at liquid-nitrogen temperatures
- 13.1. Introduction
- 13.2. Substrates for microwave circuits
- 13.3. HTS thin-film materials
- 13.4. Fabrication processes for HTS microwave circuits
- 13.5. Design and tuning approaches for HTS filters
- 13.6. Cryogenic packaging
- 13.7. HTS bandpass filters for mobile telecommunications
- 13.8. HTS JJ-based frequency down-converter
- 13.9. Discussion and conclusions
- 14. High-temperature superconductor-based power delivery
- 14.1. Introduction
- 14.2. Conventional electrical power transmission
- 14.3. HTS wires
- 14.4. HTS cable designs
- 14.5. HTS fault current limiters
- 14.6. HTS transformers
- 14.7. Discussion and conclusions
- part II. Harsh-environment electronics
- 15. Humidity and contamination effects on electronics
- 15.1. Introduction
- 15.2. Absolute and relative humidity
- 15.3. Relation between humidity, contamination and corrosion
- 15.4. Metals and alloys used in electronics
- 15.5. Humidity-triggered corrosion mechanisms
- 15.6. Discussion and conclusions
- 16. Moisture and waterproof electronics
- 16.1. Introduction
- 16.2. Corrosion prevention by design
- 16.3. Parylene coatings
- 16.4. Superhydrophobic coatings
- 16.5. Volatile corrosion inhibitor coatings
- 16.6. Silicones
- 16.7. Discussion and conclusions
- 17. Preventing chemical corrosion in electronics
- 17.1. Introduction
- 17.2. Sulfidic and oxidation corrosion from environmental gases
- 17.3. Electrolytic ion migration and galvanic coupling
- 17.4. Internal corrosion of integrated and printed circuit board circuits
- 17.5. Fretting corrosion
- 17.6. Tin whisker growth
- 17.7. Minimizing corrosion risks
- 17.8. Further protection methods
- 17.9. Hermetic packaging
- 17.10. Hermetic glass passivation of discrete high-voltage diodes, transistors and thyristors
- 17.11. Discussion and conclusions
- 18. Radiation effects on electronics
- 18.1. Introduction
- 18.2. Sources of radiation
- 18.3. Types of radiation effects
- 18.4. Total dose effects
- 18.5. Single event effects
- 18.6. Discussion and conclusions
- 19. Radiation-hardened electronics
- 19.1. The meaning of 'radiation hardening'
- 19.2. Radiation hardening by process (RHBP)
- 19.3. Radiation hardening by design
- 19.4. Discussion and Conclusions
- 20. Vibration-tolerant electronics
- 20.1. Vibration is omnipresent
- 20.2. Random and sinusoidal vibrations
- 20.3. Countering vibration effects
- 20.4. Passive and active vibration isolators
- 20.5. Theory of passive vibration isolation
- 20.6. Mechanical spring vibration isolators
- 20.7. Air-spring vibration isolators
- 20.8. Wire-rope isolators
- 20.9. Elastomeric isolators
- 20.10. Negative stiffness isolators
- 20.11. Active vibration isolators
- 20.12. Discussion and conclusions.