Cargando…

Extreme-temperature and harsh-environment electronics : physics, technology and applications /

Electronic devices and circuits are employed by a range of industries in testing conditions from extremes of high- or low-temperature, in chemically corrosive environments, subject to shock and vibration or exposure to radiation. This book describes the diverse measures necessary to make electronics...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Khanna, Vinod Kumar, 1952- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017]
Colección:IOP (Series). Release 3.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • 1. Introduction and overview
  • 1.1. Reasons for moving away from normal practices in electronics
  • 1.2. Organization of the book
  • 1.3. Temperature effects
  • 1.4. Harsh environment effects
  • 1.5. Discussion and conclusions
  • 2. Operating electronics beyond conventional limits
  • 2.1. Life-threatening temperature imbalances on Earth and other planets
  • 2.2. Temperature disproportions for electronics
  • 2.3. High-temperature electronics
  • 2.4. Low-temperature electronics
  • 2.5. The scope of extreme-temperature and harsh-environment electronics
  • 2.6. Discussion and conclusions
  • part I. Extreme-temperature electronics
  • 3. Temperature effects on semiconductors
  • 3.1. Introduction
  • 3.2. The energy bandgap
  • 3.3. Intrinsic carrier concentration
  • 3.4. Carrier saturation velocity
  • 3.5. Electrical conductivity of semiconductors
  • 3.6. Free carrier concentration in semiconductors
  • 3.7. Incomplete ionization and carrier freeze-out
  • 3.8. Different ionization regimes
  • 3.9. Mobilities of charge carriers in semiconductors
  • 3.10. Equations for mobility variation with temperature
  • 3.11. Mobility in MOSFET inversion layers at low temperatures
  • 3.12. Carrier lifetime
  • 3.13. Wider bandgap semiconductors than silicon
  • 3.14. Discussion and conclusions
  • 4. Temperature dependence of the electrical characteristics of silicon bipolar devices and circuits
  • 4.1. Properties of silicon
  • 4.2. Intrinsic temperature of silicon
  • 4.3. Recapitulating single-crystal silicon wafer technology
  • 4.4. Examining temperature effects on bipolar devices
  • 4.5. Bipolar analog circuits in the 25°C to 300°C range
  • 4.6. Bipolar digital circuits in the 25°C to 340°C range
  • 4.7. Discussion and conclusions
  • 5. Temperature dependence of electrical characteristics of silicon MOS devices and circuits
  • 5.1. Introduction
  • 5.2. Threshold voltage of an n-channel enhancement mode MOSFET
  • 5.3. On-resistance (RDS(ON)) of a double-diffused vertical MOSFET
  • 5.4. Transconductance (gm) of a MOSFET
  • 5.5. BVDSS and IDSS of a MOSFET
  • 5.6. Zero temperature coefficient biasing point of MOSFET
  • 5.7. Dynamic response of a MOSFET
  • 5.8. MOS analog circuits in the 25°C to 300°C range
  • 5.9. Digital CMOS circuits in -196°C to 270°C range
  • 5.10. Discussion and conclusions
  • 6. The influence of temperature on the performance of silicon-germanium heterojunction bipolar transistors
  • 6.1. Introduction
  • 6.2. HBT fabrication
  • 6.3. Current gain and forward transit time of Si/Si1-xGex HBT
  • 6.4. Comparison between Si BJT and Si/SiGe HBT
  • 6.5. Discussion and conclusions
  • 7. The temperature-sustaining capability of gallium arsenide electronics
  • 7.1. Introduction
  • 7.2. The intrinsic temperature of GaAs
  • 7.3. Growth of single-crystal gallium arsenide
  • 7.4. Doping of GaAs
  • 7.5. Ohmic contacts to GaAs
  • 7.6. Schottky contacts to GaAs
  • 7.7. Commercial GaAs device evaluation in the 25°C to 400°C temperature range
  • 7.8. Structural innovations for restricting the leakage current of GaAs MESFET up to 300°C
  • 7.9. Won et al threshold voltage model for a GaAs MESFET
  • 7.10. The high-temperature electronic technique for enhancing the performance of MESFETs up to 300°C
  • 7.11. The operation of GaAs complementary heterojunction FETs from 25°C to 500°C
  • 7.12. GaAs bipolar transistor operation up to 400°C
  • 7.13. A GaAs-based HBT for applications up to 350°C
  • 7.14. AlxGaAs1-x/GaAs HBT
  • 7.15. Discussion and conclusions
  • 8. Silicon carbide electronics for hot environments
  • 8.1. Introduction
  • 8.2. Intrinsic temperature of silicon carbide
  • 8.3. Silicon carbide single-crystal growth
  • 8.4. Doping of silicon carbide
  • 8.5. Surface oxidation of silicon dioxide
  • 8.6. Schottky and ohmic contacts to silicon carbide
  • 8.7. SiC p-n diodes
  • 8.8. SiC Schottky-barrier diodes
  • 8.9. SiC JFETs
  • 8.10. SiC bipolar junction transistors
  • 8.11. SiC MOSFETs
  • 8.12. Discussion and conclusions
  • 9. Gallium nitride electronics for very hot environments
  • 9.1. Introduction
  • 9.2. Intrinsic temperature of gallium nitride
  • 9.3. Growth of the GaN epitaxial layer
  • 9.4. Doping of GaN
  • 9.5. Ohmic contacts to GaN
  • 9.6. Schottky contacts to GaN
  • 9.7. GaN MESFET model with hyperbolic tangent function
  • 9.8. AlGaN/GaN HEMTs
  • 9.9. InAlN/GaN HEMTs
  • 9.10. Discussion and conclusions
  • 10. Diamond electronics for ultra-hot environments
  • 10.1. Introduction
  • 10.2. Intrinsic temperature of diamond
  • 10.3. Synthesis of diamond
  • 10.4. Doping of diamond
  • 10.5. A diamond p-n junction diode
  • 10.6. Diamond Schottky diode
  • 10.7. Diamond BJT operating at <200°C
  • 10.8. Diamond MESFET
  • 10.9. Diamond JFET
  • 10.10. Diamond MISFET
  • 10.11. Discussion and conclusions
  • 11. High-temperature passive components, interconnections and packaging
  • 11.1. Introduction
  • 11.2. High-temperature resistors
  • 11.3. High-temperature capacitors
  • 11.4. High-temperature magnetic cores and inductors
  • 11.5. High-temperature metallization
  • 11.6. High-temperature packaging
  • 11.7. Discussion and conclusions
  • 12. Superconductive electronics for ultra-cool environment
  • 12.1. Introduction
  • 12.2. Superconductivity basics
  • 12.3. Josephson junction
  • 12.4. Inverse AC Josephson effect : Shapiro steps
  • 12.5. Superconducting quantum interference devices
  • 12.6. Rapid single flux quantum logic
  • 12.7. Discussion and conclusions
  • 13. Superconductor-based microwave circuits operating at liquid-nitrogen temperatures
  • 13.1. Introduction
  • 13.2. Substrates for microwave circuits
  • 13.3. HTS thin-film materials
  • 13.4. Fabrication processes for HTS microwave circuits
  • 13.5. Design and tuning approaches for HTS filters
  • 13.6. Cryogenic packaging
  • 13.7. HTS bandpass filters for mobile telecommunications
  • 13.8. HTS JJ-based frequency down-converter
  • 13.9. Discussion and conclusions
  • 14. High-temperature superconductor-based power delivery
  • 14.1. Introduction
  • 14.2. Conventional electrical power transmission
  • 14.3. HTS wires
  • 14.4. HTS cable designs
  • 14.5. HTS fault current limiters
  • 14.6. HTS transformers
  • 14.7. Discussion and conclusions
  • part II. Harsh-environment electronics
  • 15. Humidity and contamination effects on electronics
  • 15.1. Introduction
  • 15.2. Absolute and relative humidity
  • 15.3. Relation between humidity, contamination and corrosion
  • 15.4. Metals and alloys used in electronics
  • 15.5. Humidity-triggered corrosion mechanisms
  • 15.6. Discussion and conclusions
  • 16. Moisture and waterproof electronics
  • 16.1. Introduction
  • 16.2. Corrosion prevention by design
  • 16.3. Parylene coatings
  • 16.4. Superhydrophobic coatings
  • 16.5. Volatile corrosion inhibitor coatings
  • 16.6. Silicones
  • 16.7. Discussion and conclusions
  • 17. Preventing chemical corrosion in electronics
  • 17.1. Introduction
  • 17.2. Sulfidic and oxidation corrosion from environmental gases
  • 17.3. Electrolytic ion migration and galvanic coupling
  • 17.4. Internal corrosion of integrated and printed circuit board circuits
  • 17.5. Fretting corrosion
  • 17.6. Tin whisker growth
  • 17.7. Minimizing corrosion risks
  • 17.8. Further protection methods
  • 17.9. Hermetic packaging
  • 17.10. Hermetic glass passivation of discrete high-voltage diodes, transistors and thyristors
  • 17.11. Discussion and conclusions
  • 18. Radiation effects on electronics
  • 18.1. Introduction
  • 18.2. Sources of radiation
  • 18.3. Types of radiation effects
  • 18.4. Total dose effects
  • 18.5. Single event effects
  • 18.6. Discussion and conclusions
  • 19. Radiation-hardened electronics
  • 19.1. The meaning of 'radiation hardening'
  • 19.2. Radiation hardening by process (RHBP)
  • 19.3. Radiation hardening by design
  • 19.4. Discussion and Conclusions
  • 20. Vibration-tolerant electronics
  • 20.1. Vibration is omnipresent
  • 20.2. Random and sinusoidal vibrations
  • 20.3. Countering vibration effects
  • 20.4. Passive and active vibration isolators
  • 20.5. Theory of passive vibration isolation
  • 20.6. Mechanical spring vibration isolators
  • 20.7. Air-spring vibration isolators
  • 20.8. Wire-rope isolators
  • 20.9. Elastomeric isolators
  • 20.10. Negative stiffness isolators
  • 20.11. Active vibration isolators
  • 20.12. Discussion and conclusions.