Nuclear materials science /
Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2016]
|
Colección: | IOP expanding physics.
IOP (Series). Release 2. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 9. Mistakes made and lessons learnt
- 9.1. Windscale--Pile 1
- 9.2. Three Mile Island--Reactor 2
- 9.3. Chernobyl--Reactor 4
- 9.4. Fukushima Daiichi
- 9.5. How do the incidents compare?
- 8. Materials and nuclear fusion
- 8.1. Atomic background and recap
- 8.2. Requirements for fusion
- 8.3. ITER--the International Thermonuclear Experimental Reactor
- 8.4. Outcomes and challenges in fusion
- 8.5. Material requirements
- 8.6. Radiation damage and the first wall
- 8.7. Sputtering
- 8.8. Gas bubble formation
- 8.9. The divertor
- 8.10. Breeding and heat generation
- 8.11. Tritium breeding
- 8.12. Challenges in fission and fusion
- 7. The challenges of nuclear waste
- 7.1. Sources of nuclear waste
- 7.2. Natural sources of uranium/thorium
- 7.3. Long-term effects in waste forms
- 7.4. Long-term behaviour of nuclear waste
- 7.5. Geological disposal of nuclear waste
- 7.6. Ceramics and glasses--comparison
- 7.7. Transmutation
- 6. The challenges for materials in new reactor designs
- 6.1. Generation IV--genesis
- 6.2. Reactor types
- 6.3. Material challenges in GenIV
- 6.4. Containment
- 6.5. Radiation damage
- 6.6. Alternative reactor technology
- 6.7. Travelling wave reactor
- 6.8. Thorium reactors
- 6.9. Small modular reactors (SMR)
- 5. Evolution of reactor technologies
- 5.1. Generation I--prototype reactors
- 5.2. GenII--commercial reactors
- 5.3. GenerationIII/generationIII+--evolved designs
- 5.4. Molten salt reactors
- 5.5. Summary
- 4. Nuclear fuel, part 2 : operational effects
- 4.1. Initial stages
- 4.2. Classical effects from heating
- 4.3. Fission products
- 4.4. Initial reactor operation
- 4.5. Fuel cladding under operation within the core
- 4.6. Fuel and cladding
- 4.7. Cladding corrosion
- 3. Nuclear fuel, part 1 : fuel and cladding
- 3.1. What is required from fuel in a fission reactor?
- 3.2. Reminder of the fission process
- 3.3. What are the realistic types of fuel?
- 3.4. Uranium
- 3.5. Plutonium
- 3.6. Fuel containment
- 3.7. Zirconium-based cladding
- 3.8. Iron-based cladding
- 3.9. How do fuel and cladding relate to each other?
- 2. Radiation damage
- 2.1. Key definitions
- 2.2. Radiation damage
- 2.3. Prediction of damage--the Kinchin-Pease methodology
- 2.4. Implications of damage
- 2.5. Outcomes from damage
- 2.6. Modelling damage build-up in materials
- 2.7. The bulk effects of damage
- Preface
- 1. Atomic considerations
- 1.1. Isotopes
- 1.2. Nuclear stability and radioactive decay
- 1.3. Alpha-decay ([alpha]-decay)
- 1.4. Beta-decay ([beta]-decay)
- 1.5. Beta+/positron emission or electron capture
- 1.6. Gamma emission
- 1.7. How do the mechanisms relate to each other?
- 1.8. Radioactive half-life
- 1.9. Decay series
- 1.10. Observations on isotope stability
- 1.11. Binding energy
- 1.12. Fission and fusion
- 1.13. Spontaneous fission
- 1.14. Inducing fission and chain reactions
- 1.15. Neutron absorption and fissile and fertile isotopes
- 1.16. Increasing fission yield
- 1.17. What are the key criteria for nuclear fission?