Cargando…

Nuclear materials science /

Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Whittle, Karl R. (Autor)
Formato: Electrónico Video
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2016]
Colección:IOP expanding physics.
IOP (Series). Release 2.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 9. Mistakes made and lessons learnt
  • 9.1. Windscale--Pile 1
  • 9.2. Three Mile Island--Reactor 2
  • 9.3. Chernobyl--Reactor 4
  • 9.4. Fukushima Daiichi
  • 9.5. How do the incidents compare?
  • 8. Materials and nuclear fusion
  • 8.1. Atomic background and recap
  • 8.2. Requirements for fusion
  • 8.3. ITER--the International Thermonuclear Experimental Reactor
  • 8.4. Outcomes and challenges in fusion
  • 8.5. Material requirements
  • 8.6. Radiation damage and the first wall
  • 8.7. Sputtering
  • 8.8. Gas bubble formation
  • 8.9. The divertor
  • 8.10. Breeding and heat generation
  • 8.11. Tritium breeding
  • 8.12. Challenges in fission and fusion
  • 7. The challenges of nuclear waste
  • 7.1. Sources of nuclear waste
  • 7.2. Natural sources of uranium/thorium
  • 7.3. Long-term effects in waste forms
  • 7.4. Long-term behaviour of nuclear waste
  • 7.5. Geological disposal of nuclear waste
  • 7.6. Ceramics and glasses--comparison
  • 7.7. Transmutation
  • 6. The challenges for materials in new reactor designs
  • 6.1. Generation IV--genesis
  • 6.2. Reactor types
  • 6.3. Material challenges in GenIV
  • 6.4. Containment
  • 6.5. Radiation damage
  • 6.6. Alternative reactor technology
  • 6.7. Travelling wave reactor
  • 6.8. Thorium reactors
  • 6.9. Small modular reactors (SMR)
  • 5. Evolution of reactor technologies
  • 5.1. Generation I--prototype reactors
  • 5.2. GenII--commercial reactors
  • 5.3. GenerationIII/generationIII+--evolved designs
  • 5.4. Molten salt reactors
  • 5.5. Summary
  • 4. Nuclear fuel, part 2 : operational effects
  • 4.1. Initial stages
  • 4.2. Classical effects from heating
  • 4.3. Fission products
  • 4.4. Initial reactor operation
  • 4.5. Fuel cladding under operation within the core
  • 4.6. Fuel and cladding
  • 4.7. Cladding corrosion
  • 3. Nuclear fuel, part 1 : fuel and cladding
  • 3.1. What is required from fuel in a fission reactor?
  • 3.2. Reminder of the fission process
  • 3.3. What are the realistic types of fuel?
  • 3.4. Uranium
  • 3.5. Plutonium
  • 3.6. Fuel containment
  • 3.7. Zirconium-based cladding
  • 3.8. Iron-based cladding
  • 3.9. How do fuel and cladding relate to each other?
  • 2. Radiation damage
  • 2.1. Key definitions
  • 2.2. Radiation damage
  • 2.3. Prediction of damage--the Kinchin-Pease methodology
  • 2.4. Implications of damage
  • 2.5. Outcomes from damage
  • 2.6. Modelling damage build-up in materials
  • 2.7. The bulk effects of damage
  • Preface
  • 1. Atomic considerations
  • 1.1. Isotopes
  • 1.2. Nuclear stability and radioactive decay
  • 1.3. Alpha-decay ([alpha]-decay)
  • 1.4. Beta-decay ([beta]-decay)
  • 1.5. Beta+/positron emission or electron capture
  • 1.6. Gamma emission
  • 1.7. How do the mechanisms relate to each other?
  • 1.8. Radioactive half-life
  • 1.9. Decay series
  • 1.10. Observations on isotope stability
  • 1.11. Binding energy
  • 1.12. Fission and fusion
  • 1.13. Spontaneous fission
  • 1.14. Inducing fission and chain reactions
  • 1.15. Neutron absorption and fissile and fertile isotopes
  • 1.16. Increasing fission yield
  • 1.17. What are the key criteria for nuclear fission?