Cargando…

Nuclear materials science /

Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Whittle, Karl R. (Autor)
Formato: Electrónico Video
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2016]
Colección:IOP expanding physics.
IOP (Series). Release 2.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 4500
001 IOP_9780750311045
003 IOP
005 20170201080912.0
006 m eo d
007 cr cn |||m|||a
008 160605s2016 enka ob 000 0 eng d
020 |a 9780750311281  |q mobi 
020 |z 9780750311052  |q print 
020 |a 9780750311045  |q ebook 
024 7 |a 10.1088/978-0-7503-1104-5  |2 doi 
035 |a (CaBNVSL)thg00971271 
035 |a (OCoLC)953229070 
040 |a CaBNVSL  |b eng  |e rda  |c CaBNVSL  |d CaBNVSL 
050 4 |a TK9185  |b .W556 2016eb 
072 7 |a TEC021000  |2 bisacsh 
072 7 |a TGM  |2 bicssc 
082 0 4 |a 621.48/33  |2 23 
100 1 |a Whittle, Karl R.,  |e author. 
245 1 0 |a Nuclear materials science /  |c Karl Whittle. 
264 1 |a Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :  |b IOP Publishing,  |c [2016] 
300 |a 1 electronic document (various pagings) :  |b illustrations (some color). 
336 |a text  |2 rdacontent 
336 |a two-dimensional moving image  |2 rdacontent 
337 |a electronic  |2 isbdmedia 
338 |a online resource  |2 rdacarrier 
490 1 |a IOP expanding physics,  |x 2053-2563 
490 1 |a [IOP release 2] 
500 |a "Version: 20160501"--Title page verso. 
500 |a EPUB version includes embedded videos. 
504 |a Includes bibliographical references. 
505 8 |a 9. Mistakes made and lessons learnt -- 9.1. Windscale--Pile 1 -- 9.2. Three Mile Island--Reactor 2 -- 9.3. Chernobyl--Reactor 4 -- 9.4. Fukushima Daiichi -- 9.5. How do the incidents compare? 
505 8 |a 8. Materials and nuclear fusion -- 8.1. Atomic background and recap -- 8.2. Requirements for fusion -- 8.3. ITER--the International Thermonuclear Experimental Reactor -- 8.4. Outcomes and challenges in fusion -- 8.5. Material requirements -- 8.6. Radiation damage and the first wall -- 8.7. Sputtering -- 8.8. Gas bubble formation -- 8.9. The divertor -- 8.10. Breeding and heat generation -- 8.11. Tritium breeding -- 8.12. Challenges in fission and fusion 
505 8 |a 7. The challenges of nuclear waste -- 7.1. Sources of nuclear waste -- 7.2. Natural sources of uranium/thorium -- 7.3. Long-term effects in waste forms -- 7.4. Long-term behaviour of nuclear waste -- 7.5. Geological disposal of nuclear waste -- 7.6. Ceramics and glasses--comparison -- 7.7. Transmutation 
505 8 |a 6. The challenges for materials in new reactor designs -- 6.1. Generation IV--genesis -- 6.2. Reactor types -- 6.3. Material challenges in GenIV -- 6.4. Containment -- 6.5. Radiation damage -- 6.6. Alternative reactor technology -- 6.7. Travelling wave reactor -- 6.8. Thorium reactors -- 6.9. Small modular reactors (SMR) 
505 8 |a 5. Evolution of reactor technologies -- 5.1. Generation I--prototype reactors -- 5.2. GenII--commercial reactors -- 5.3. GenerationIII/generationIII+--evolved designs -- 5.4. Molten salt reactors -- 5.5. Summary 
505 8 |a 4. Nuclear fuel, part 2 : operational effects -- 4.1. Initial stages -- 4.2. Classical effects from heating -- 4.3. Fission products -- 4.4. Initial reactor operation -- 4.5. Fuel cladding under operation within the core -- 4.6. Fuel and cladding -- 4.7. Cladding corrosion 
505 8 |a 3. Nuclear fuel, part 1 : fuel and cladding -- 3.1. What is required from fuel in a fission reactor? -- 3.2. Reminder of the fission process -- 3.3. What are the realistic types of fuel? -- 3.4. Uranium -- 3.5. Plutonium -- 3.6. Fuel containment -- 3.7. Zirconium-based cladding -- 3.8. Iron-based cladding -- 3.9. How do fuel and cladding relate to each other? 
505 8 |a 2. Radiation damage -- 2.1. Key definitions -- 2.2. Radiation damage -- 2.3. Prediction of damage--the Kinchin-Pease methodology -- 2.4. Implications of damage -- 2.5. Outcomes from damage -- 2.6. Modelling damage build-up in materials -- 2.7. The bulk effects of damage 
505 0 |a Preface -- 1. Atomic considerations -- 1.1. Isotopes -- 1.2. Nuclear stability and radioactive decay -- 1.3. Alpha-decay ([alpha]-decay) -- 1.4. Beta-decay ([beta]-decay) -- 1.5. Beta+/positron emission or electron capture -- 1.6. Gamma emission -- 1.7. How do the mechanisms relate to each other? -- 1.8. Radioactive half-life -- 1.9. Decay series -- 1.10. Observations on isotope stability -- 1.11. Binding energy -- 1.12. Fission and fusion -- 1.13. Spontaneous fission -- 1.14. Inducing fission and chain reactions -- 1.15. Neutron absorption and fissile and fertile isotopes -- 1.16. Increasing fission yield -- 1.17. What are the key criteria for nuclear fission? 
520 3 |a Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field. 
521 |a Advanced students in nuclear engineering, materials and physics. 
530 |a Also available in print. 
538 |a System requirements: Adobe Acrobat Reader or EPUB reader. 
538 |a Mode of access: World Wide Web. 
545 |a Dr. Karl Whittle joined the department of Materials Science and Engineering at the University of Sheffield in 2012, before that being a research leader at the Australian Nuclear Science and Technology Organisation (ANSTO) in nuclear materials science. In particular focusing on the effects of radiation damage, how it can be ameliorated and materials designed for the next generation nuclear reactor technologies, both fission and fusion based. Before that he worked in postdoctoral research positions at the Universities of Sheffield, Cambridge and Bristol. 
588 |a Title from PDF title page (viewed on July 5, 2016). 
650 7 |a TECHNOLOGY & ENGINEERING / Materials Science.  |2 bisacsh 
650 7 |a Materials science.  |2 bicssc 
650 0 |a Nuclear fuels. 
650 0 |a Nuclear engineering. 
650 0 |a Nuclear reactors  |x Materials. 
710 2 |a Institute of Physics (Great Britain),  |e publisher. 
776 0 8 |i Print version:  |z 9780750311052 
830 0 |a IOP expanding physics. 
830 0 |a IOP (Series).  |p Release 2. 
856 4 0 |u https://iopscience.uam.elogim.com/book/978-0-7503-1104-5  |z Texto completo