Cargando…

Transport in semiconductor mesoscopic devices /

Modern electronics is being transformed as device size decreases to a size where the dimensions are significantly smaller than the constituent electron's mean free path. In such systems the electron motion is strongly confined resulting in dramatic changes of behaviour compared to the bulk. Thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ferry, David K. (Autor)
Formato: Electrónico Video
Idioma:Inglés
Publicado: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2015]
Colección:IOP (Series). Release 2.
IOP expanding physics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 10. Hot carriers in mesoscopic devices
  • 10.1. Energy-loss rates
  • 10.2. The energy-relaxation time.
  • 9. Open quantum dots
  • 9.1. Conductance fluctuations in open dots
  • 9.2. Pointer states
  • 9.3. Hybrid states
  • 9.4. Imaging the pointer state scar
  • 8. Tunnel devices
  • 8.1. Coulomb blockade
  • 8.2. Single-electron structures
  • 8.3. Quantum dots and qubits
  • 8.4. Resonant tunneling diodes
  • Appendix H. Simple tunneling
  • Appendix I. The Darwin-Fock spectrum
  • 7. Spin
  • 7.1. The spin Hall effect
  • 7.2. Spin injection
  • 7.3. Spin currents in nanowires
  • 7.4. Spin relaxation
  • Appendix F. Spin angular momentum
  • Appendix G. The Bloch sphere
  • 6. The quantum Hall effect
  • 6.1. The Shubnikov-de Haas effect
  • 6.2. The quantum Hall effect
  • 6.3. The Büttiker-Landauer approach
  • 6.4. The fractional quantum Hall effect
  • 5. Localization and fluctuations
  • 5.1. Localization of electronic states
  • 5.2. Conductivity
  • 5.3. Conductance fluctuations
  • 5.4. Phase-breaking time
  • 4. Carbon and other new materials
  • 4.1. Graphene
  • 4.2. Carbon nanotubes
  • 4.3. Topological insulators
  • 4.4. The chalcogenides
  • Appendix E. Klein tunneling
  • 3. The Aharonov-Bohm effect
  • 3.1. Simple gauge theory of the AB effect
  • 3.2. Temperature dependence of the AB effect
  • 3.3. The AB effect in other structures
  • 3.4. Gated AB rings
  • 3.5. The electrostatic AB effect
  • 3.6. The AAS effect
  • 3.7. Weak localization
  • Appendix D. The gauge in field theory
  • 2. Wires and channels
  • 2.1. The quantum point contact
  • 2.2. The density of states
  • 2.3. The Landauer formula
  • 2.4. Temperature, scattering, and anomalies
  • 2.5. Beyond the simple theory for the QPC
  • 2.6. Landauer's contact resistance and scaled CMOS
  • 2.7. Simulating the channel: the scattering matrix
  • 2.8. Simulating the channel: the recursive Green's function
  • Appendix A. Coupled quantum and Poisson problems
  • Appendix B. The harmonic oscillator
  • Appendix C. Discretizing the Schrödinger equation
  • Preface
  • Author biography
  • 1. The world of nanoelectronics
  • 1.1. Moore's law
  • 1.2. Nanostructures
  • 1.3. On the concept of localization
  • 1.4. Some electronic time and length scales
  • 1.5. Heterostructures for mesoscopic devices
  • 1.6. Nanofabrication